793 research outputs found

    Laboratory astrophysics under the ultraviolet, visible, and gravitational astrophysics research program: Oscillator strengths for ultraviolet atomic transitions

    Get PDF
    The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres

    A comparison of UV surface brightness and HI surface densities for spiral galaxies

    Get PDF
    Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies

    Revisiting the Chlorine Abundance in Diffuse Interstellar Clouds from Measurements with the Copernicus Satellite

    Full text link
    We reanalyzed interstellar Cl I and Cl II spectra acquired with the Copernicus satellite. The directions for this study come from those of Crenny & Federman and sample the transition from atomic to molecular rich clouds where the unique chemistry leading to molecules containing chlorine is initiated. Our profile syntheses relied on up-to-date laboratory oscillator strengths and component structures derived from published high-resolution measurements of K I absorption that were supplemented with Ca II and Na I D results. We obtain self-consistent results for the Cl I lines at 1088, 1097, and 1347 A from which precise column densities are derived. The improved set of results reveals clearer correspondences with H2 and total hydrogen column densities. These linear relationships arise from rapid conversion of Cl^+ to Cl^0 in regions where H2 is present.Comment: 17 pp, 2 tables, and 3 figures, to appear in The Astrophysical Journa

    Density Variations over Subparsec Scales in Diffuse Molecular Gas

    Get PDF
    We present high-resolution observations of interstellar CN, CH, CH^{+}, \ion{Ca}{1}, and \ion{Ca}{2} absorption lines toward the multiple star systems HD206267 and HD217035. Substantial variations in CN absorption are observed among three sight lines of HD206267, which are separated by distances of order 10,000 AU; smaller differences are seen for CH, CH^{+}, and \ion{Ca}{1}. Gas densities for individual velocity components are inferred from a chemical model, independent of assumptions about cloud shape. While the component densities can differ by factors of 5.0 between adjacent sightlines, the densities are always less than 5000 cm^{-3}. Calculations show that the derived density contrasts are not sensitive to the temperature or reaction rates used in the chemical model. A large difference in the CH^{+} profiles (a factor of 2 in column density) is seen in the lower density gas toward HD217035.Comment: 9 pages, 2 figures. Accepted for publication in ApJ
    corecore