182 research outputs found

    A Potential Vorticity Theory for the Formation of Elongate Channels in River Deltas and Lakes

    Get PDF
    Rivers empty into oceans and lakes as turbulent sediment-laden jets, which can be characterized by a Gaussian horizontal velocity profile that spreads and decays downstream because of shearing and lateral mixing at the jet margins. Recent experiments demonstrate that this velocity field controls river-mouth sedimentation patterns. In nature, diffuse jets are associated with mouth bar deposition forming bifurcating distributary networks, while focused jets are associated with levee deposition and the growth of elongate channels that do not bifurcate. River outflows from elongate channels are similar in structure to cold filaments observed in ocean currents, where high potential vorticity helps to preserve coherent structure over large distances. Motivated by these observations, we propose a hydrodynamic theory that seeks to predict the conditions under which elongate channels form. Our approach models jet velocity patterns using the flow vorticity. Both shearing and lateral spreading are directly related to the vertical component of vorticity. We introduce a new kind of potential vorticity that incorporates sediment concentration and thus allows study of jet sedimentation patterns. The potential vorticity equation reduces the number of fluid momentum equations to one without losing generality. This results in a compact analytical solution capable of describing the streamwise evolution of the potential vorticity of a sediment-laden jet from initial conditions at the river mouth. Our theory predicts that high potential vorticity is a necessary condition for focused levee deposition and the creation of elongate channels. Comparison to numerical, laboratory, and field studies indicates that potential vorticity is a primary control on channel morphology. Our results may be useful for designing river delta restoration schemes such as the proposed Mississippi Delta diversion

    The role of Internal Solitary Waves on deep-water sedimentary processes. The case of up-slope migrating sediment waves off the Messina Strait

    Get PDF
    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities

    Dynamics of River Mouth Deposits

    Get PDF
    Bars and subaqueous levees often form at river mouths due to high sediment availability. Once these deposits emerge and develop into islands, they become important elements of the coastal landscape, hosting rich ecosystems. Sea level rise and sediment starvation are jeopardizing these landforms, motivating a thorough analysis of the mechanisms responsible for their formation and evolution. Here we present recent studies on the dynamics of mouth bars and subaqueous levees. The review encompasses both hydrodynamic and morphological results. We first analyze the hydrodynamics of the water jet exiting a river mouth. We then show how this dynamics coupled to sediment transport leads to the formation of mouth bars and levees. Specifically, we discuss the role of sediment eddy diffusivity and potential vorticity on sediment redistribution and related deposits. The effect of waves, tides, sediment characteristics, and vegetation on river mouth deposits is included in our analysis, thus accounting for the inherent complexity of the coastal environment where these landforms are common. Based on the results presented herein, we discuss in detail how river mouth deposits can be used to build new land or restore deltaic shorelines threatened by erosion

    Mastectomy rates are decreasing in the era of service screening: a population-based study in Italy (1997-2001)

    Get PDF
    We enrolled all 2162 in situ and 21 148 invasive cases of breast cancer in 17 areas of Italy, diagnosed in 1997-2001. Rates of early cancer increased by 13.7% in the screening age group (50-69 years), and breast conserving surgery by 24.6%. Advanced cancer rates decreased by 19.4%, and mastectomy rates by 24.2%. Service screening did not increase mastectomy rates in the study population

    Mastectomy rates are decreasing in the era of service screening: a population-based study in Italy (1997–2001)

    Get PDF
    We enrolled all 2162 in situ and 21 148 invasive cases of breast cancer in 17 areas of Italy, diagnosed in 1997–2001. Rates of early cancer increased by 13.7% in the screening age group (50–69 years), and breast conserving surgery by 24.6%. Advanced cancer rates decreased by 19.4%, and mastectomy rates by 24.2%. Service screening did not increase mastectomy rates in the study population
    • …
    corecore