12 research outputs found

    IL11 involvement in inflammatory and pro-fibrotic alterations via STAT3-WNT5A signaling activation by SARS-CoV-2 accessory proteins

    Get PDF
    1 p.-6 fig.SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood and several of them have been mutating into the different variants of the virus. WNT5A dysregulation signaling has been implicated in the development of various pathological conditions in humans such as inflammation and fibrosis. Interleukin-6 (IL6) family members induce WNT5A expression in various cell types, highlighting a critical role for WNT5A in immune responses. Expression of Interleukin-11 (IL11), a member of IL6 cytokine family, correlates with the extent of fibrosis and its signaling induced fibroblast activation via TGFβ. In this study, A549 were transduced with lentivirus expressing individual viral accessory proteins ORF6, ORF8,ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate) and their interaction with cellular responses were analyzed. Firstly, transcriptomic analysis revealed that both WNT5A and IL11 were significantly up-regulated in all transduced cells. Some IL11 signaling-related genes, such as STAT3 or TGFβ, were differentially expressed. IPA software analysis showed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease. Subsequently, bioinformatics and functional assays revealed that these four accessory proteins were implicated in both inflammatory and fibrotic responses. While overexpression of ORF8 and ORF9c appear to trigger a STAT3-dependent cellular response mediated by IL11, ORF6 and ORF9b seem to provoke a cell profibrotic response mediated by TGFb through WNT5A. Our results suggest that ORF6, ORF8, ORF9b and ORF9c could be involved in inflammatory and fibrotic responses in SARS-CoV-2 infection. Thus, these accessory proteins could be targeted by new therapies for COVID-19 disease.This research work was funded by the European Commission – NextGenerationEU(Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI+ Salud Global), Junta de Andalucía (CV20-20089) and Spanish Ministry of Science project PID2021-123399OB-I00.Peer reviewe

    SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling

    Get PDF
    15 p.-7 fig.SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.This research work was funded by the European Commission – NextGenerationEU (Regulation EU 2020/2094), through CSIC’s Global Health Platform (PTI+ Salud Global) (COVID-19-117 and SGL2103015), Junta de Andalucía (CV20-20089) and Spanish Ministry of Science project (PID2021-123399OB-I00).Peer reviewe

    SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling

    Get PDF
    SARS-CoV-2, the cause of the COVID19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. Transcriptomic analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease. Functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID19 evidenced altered gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID19 disease.N

    SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling

    Get PDF
    SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease

    Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound Listening

    Get PDF
    From seminal evidence in the early 2000s, the opportunity to drive the specific knockdown of a protein of interest (POI) through pharmacological entities called Proteolysis Targeting Chimeric molecules, or PROTACs, has become a possible therapeutic option with the involvement of these compounds in clinical trials for cancers and autoimmune diseases. The fulcrum of PROTACs pharmacodynamics is to favor the juxtaposition between an E3 ligase activity and the POI, followed by the ubiquitination of the latter and its degradation by the proteasome system. In the face of an apparently modular design of these drugs, being constituted by an E3 ligase binding moiety and a POI-binding moiety connected by a linker, the final structure of an efficient PROTAC degradation enhancer often goes beyond the molecular descriptors known to influence the biological activity, specificity, and pharmacokinetics, requiring a rational improvement through appropriate molecular strategies. Starting from the description of the basic principles underlying the activity of the PROTACs to the evaluation of the strategies for the improvement of pharmacodynamics and pharmacokinetics and rational design, this review examines the molecular elements that have been shown to be effective in allowing the evolution of these compounds from interesting proof of concepts to potential aids of clinical interest

    Ketone Body β-Hydroxy-Butyrate Sustains Progressive Motility in Capacitated Human Spermatozoa: A Possible Role in Natural Fertility

    No full text
    Background Calorie restriction is recognized as a useful nutritional approach to improve the endocrine derangements and low fertility profile associated with increased body weight. This is particularly the case for dietary regimens involving ketosis, resulting in increased serum levels of ketone bodies such as β-hydroxy-butyrate (β-HB). In addition to serum, β-HB is detected in several biofluids and β-HB levels in the follicular fluid are strictly correlated with the reproductive outcome in infertile females. However, a possible direct role of ketone bodies on sperm function has not been addressed so far. Methods Semen samples were obtained from 10 normozoospermic healthy donors attending the University Andrology Unit as participants in an infertility survey programme. The effect of β-HB on cell motility in vitro was evaluated on isolated spermatozoa according to their migratory activity in a swim-up selection procedure. The effect of β-HB on spermatozoa undergone to capacitation was also assessed. Results Two hours of exposure to β-HB, 1 mM or 4 mM, proved to be ineffective in modifying the motility of freshly ejaculated spermatozoa isolated according to the migratory activity in a swim-up procedure (all p values > 0.05). Differently, sperm maintenance in 4 mM β-HB after capacitation was associated with a significantly higher percentage of sperm cells with progressive motility compared to β-HB-lacking control (respectively, 67.6 ± 3.5% vs. 55.3 ± 6.5%, p = 0.0158). Succinyl-CoA transferase inhibitor abolished the effect on motility exerted by β-HB, underpinning a major role for this enzyme. Conclusion Our results suggest a possible physiological role for β-HB that could represent an energy metabolite in support of cell motility on capacitated spermatozoa right before encountering the oocyte

    Comparative Evaluation of the Effects of Legacy and New Generation Perfluoralkyl Substances (PFAS) on Thyroid Cells In Vitro

    Get PDF
    Background: Per- and poly-fluorinated alkyl substances (PFAS) are environment-persitent emerging endocrine disrupting chemicals raising health concerns worldwide. Exposure to PFAS has been associated with the imbalance of thyroid hormones. However, available studies addressing the cell mechanism underlying thyroid disrupting feature of legacy PFAS, such as perfluoro-octanoic acid (PFOA), perfluoro-octane-sulfonic acid (PFOS), and the new generation substitutes, such as C6O4, are still lacking. In this study the potential disrupting effect of PFOA, PFOS, and C6O4 on a murine thyroid cell model was assessed. Methods: A rat FRTL-5 cell line was used as the normal thyroid follicular cell model. Cell iodide-uptake, induced by thyroid stimulating hormone (TSH), was used to assess the functional impact of PFAS exposure on cell function. Tetrazolium salt-based cell viability assay and merocyanine 540-based cell staining were used to address the possible involvement of cell toxicity and membrane biophysical properties on altered cell function. The possible direct interaction of PFAS with TSH-receptor (TSH-R) was investigated by computer-based molecular docking and analysis of molecular dynamics. Evaluation of intracellular cAMP levels and gene expression analysis were used to validate the direct impairment of TSH-R-mediated downstream events upon PFAS exposure. Results: Different from PFOS or C6O4, exposure to PFOA at a concentration ≥ 10 ng/mL was associated with significant impairment of the iodide uptake upon TSH stimulation (respectively: basal 100.0 ± 19.0%, CTRL + TSH 188.9 ± 7.8%, PFOA 10 ng/mL + TSH 120.4 ± 20.9%, p= 0.030 vs CTRL + TSH; PFOA 100 ng/mL + TSH 115,6 ± 12,3% p= 0.017 vs CTRL + TSH). No impairment of cell viability or membrane stability was observed. Computational analysis showed a possible direct differential interaction of C6O4, PFOA, and PFOS on a same binding site of the extracellular domain of TSH-R. Finally, exposure to PFOA was associated with a significant reduction of downstream intracellular cAMP levels and both sodium-iodide transporter and thyroperoxidase gene expression upon TSH-R stimulation. Conclusions: Our data suggest that legacy and new generation PFAS can differentially influence TSH dependent signaling pathways through the direct interaction with TSH-

    In vitro binding analysis of legacy-linear and new generation-cyclic perfluoro-alkyl substances on sex hormone binding globulin and albumin, suggests low impact on serum hormone kinetics of testosterone

    Get PDF
    In humans, serum testosterone (T) is largely bound to the sex hormone binding globulin (SHBG) and human serum albumin (hSA), resulting in a 2–3 % of unbound or “free” active quote (FT). Endocrine-disrupting chemicals, including perfluoro-alkyl substances (PFAS), are recognized to interfere with the hormonal axes, but the possible impact on the FT quote has not been addressed so far. Here we investigated the possible competition of two acknowledged PFAS molecules on T binding to SHBG and hSA. In particular, perfluoro-octanoic acid (PFOA) and acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)-1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1) (C6O4) were used as, respectively, legacy-linear and new-generation-cyclic PFASs. Human recombinant SHBG 30–234 domain (SHBG30–234), produced in HEK293-F cells, and delipidated recombinant hSA were used as in vitro protein models. Isothermal Titration Calorimetry (ITC) and tryptophan fluorescence quencing (TFQ) were used to evaluate the binding modes of T and PFAS to SHBG30–234 and hSA. ITC revealed the binding of T to SHBG30–234 with a Kd of 44 ± 2 nM whilst both PFOA and C6O4 showed no binding activity. Results were confirmed by TFQ, since only T modified the fluorescence profile of SHBG30–234. In hSA, TFQ confirmed the binding of T on FA6 site of the protein. A similar binding mode was observed for PFOA but not for C6O4, as further verified by displacement experiments with T. Although both PFASs were previously shown to bind hSA, only PFOA is predicted to possibly compete with T for the binding to hSA. However, on the base of the binding stoichiometry and affinity of PFOA for hSA, this appears unlikely at the blood concentrations of the chemical documented to date

    Legacy perfluoro-alkyl substances impair LDL-cholesterol uptake independently from PCSK9-function

    Get PDF
    Perfluoro-alkyl substances (PFAS) are pollutants, whose exposure was associated with altered levels of low-density lipoproteins (LDL) in humans. Here we investigated this clinical outcome in two groups of young male adults residing in areas of respectively low and high environmental exposure to perfluoro-octanoic-acid (PFOA). From the Regional Authority data on pollution areas, 38 not-exposed and 59 exposed age-matched participants were evaluated for serum levels of total cholesterol (Total-Chol), LDL-Chol, high-density lipoprotein cholesterol (HDL-Chol), triglycerides (Tgl) and chromatography quantified PFOA. Human hepato-carcinoma cell line HepG2 was exposed to PFOA or perfluoro-octane-sulfonate (PFOS), as legacy PFAAs, and C6O4 as new generation compound. Fluorimetry was used to evaluate the cell-uptake of labelled-LDL. Proprotein Convertase Subtilisin/Kexin 9 (PCSK9)-mediated LDL-receptor (LDL-R) degradation and sub-cellular localization of LDL-R were evaluated by western blot analysis. Serum levels of PFOA, were positively and significantly correlated with Total-Chol (ρ = 0.312, P = 0.002), LDL-Chol (ρ = 0.333, P = 0.001) and Tgl (ρ = 0.375, P < 0.001). Participants with high serum LDL-Chol and Tgl levels, according to the cardiovascular risk, were more prevalent in exposed compared to not-exposed subjects (respectively: 23.7% vs 5.3%, P = 0.023 and 18,6% vs 0%, P = 0.006). Exposure of HepG2 cells to PFOA or C6O4 100 ng/mL was associated with a significantly lower LDL uptake than controls but no major impact of any PFAAs on PCSK9-mediated LDL-R degradation was observed. Compared to controls, exposure to PFAS showed an unbalanced LDL-R partition between membrane and cytoplasm. Endocytosis inducer sphingosine restored LDL-R partition only in samples exposed to C6O4. These data suggest a novel endocytosis-based mechanism of altered lipid trafficking associated with the exposure to legacy PFAS

    Seminal Cadmium Affects Human Sperm Motility Through the Stable Binding to Cell Membrane Authors

    No full text
    Environmental pollutants are claimed as major factors involved in the progressive decline of the fertility rate worldwide. Exposure to the heavy metal Cadmium (Cd) has been associated with reproductive toxicity due to its ionic mimicry. However, the possible direct accumulation of Cd in human sperm cells has been poorly investigated. In this study we aimed to clarify the possible direct effect of Cd exposure on sperm function, through the analysis of its cell accumulation. Semen sample from 30 male subjects residing in high environmental impact areas, and adhering to the “Exposoma e Plurifocalità nella Prevenzione Oncologica” campaign for testis cancer prevention, were compared with semen sample from 15 males residing in low exposure areas. Semen levels and cell Cd content were quantified by inductively-coupled plasma (ICP) spectroscopy. Cell Cd distribution was assessed by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The impact of Cd on sperm function was evaluated by the in vitro exposure to the heavy metal, whilst possible scavenging approaches/agents were assessed. In addition to higher values of semen Cd, exposed subjects showed a reduction of total motile sperm fraction compared to not-exposed controls (59.6±13.6% vs 66.3±7.3%, P=0.037). Semen Cd levels were also significantly correlated with SEM-EDS signals of Cd detected on sperm head and neck (respectively =0.738, P&lt;0.001 and =0.465, P&lt;0.001). In vitro-2 hours exposure to 0.5 M Cd was associated with a significant reduction of sperm progressive motility. Scavenging approaches with either hypo-osmotic swelling or 10 M reduced glutathione were ineffective in blunting cell Cd and restoring motility. The reduction of exposure levels appears as the main approach to reduce the reproductive issues associated with Cd
    corecore