7 research outputs found

    Quinic acids from Aster caucasicus and from transgenic callus expressing a beta-amyrin synthase.

    Get PDF
    Several different classes of secondary metabolites, including flavonoids, triterpenoid saponins and quinic acid derivatives, are found in Aster spp. (Fam. Asteraceae). Several Aster compounds revealed biological as well as pharmacological activities. In this work, a phytochemical investigation of A. caucasicus evidenced the presence of quinic acid derivatives, as well as the absence of triterpene saponins. To combine in one species the production of different phytochemicals, including triterpenes, an Agrobacterium-mediated transformation of A. caucasicus was set up to introduce A. sedifolius β-amyrin synthase (AsOXA1)-encoding gene under the control of the constitutive promoter CaMV35S. The quali-quantitative analysis of transgenic calli with ectopic expression of AsOXA1 showed, in one sample, a negligible amount of triterpene saponins combined with higher amount of quinic acid derivatives as compared with the wild type callus

    Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles

    Get PDF
    BACKGROUND: Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. RESULTS: Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. CONCLUSIONS: In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species

    Evolution of Parallel Spindles Like genes in plants and highlight of unique domain architecture#

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyploidy has long been recognized as playing an important role in plant evolution. In flowering plants, the major route of polyploidization is suggested to be sexual through gametes with somatic chromosome number (2<it>n</it>). <it>Parallel Spindle1 </it>gene in <it>Arabidopsis thaliana </it>(<it>AtPS1</it>) was recently demonstrated to control spindle orientation in the 2nd division of meiosis and, when mutated, to induce 2<it>n </it>pollen. Interestingly, <it>AtPS1 </it>encodes a protein with a FHA domain and PINc domain putatively involved in RNA decay (i.e. Nonsense Mediated mRNA Decay). In potato, 2<it>n </it>pollen depending on parallel spindles was described long time ago but the responsible gene has never been isolated. The knowledge derived from <it>AtPS1 </it>as well as the availability of genome sequences makes it possible to isolate potato <it>PSLike </it>(<it>PSL</it>) and to highlight the evolution of <it>PSL </it>family in plants.</p> <p>Results</p> <p>Our work leading to the first characterization of <it>PSLs </it>in potato showed a greater <it>PSL </it>complexity in this species respect to <it>Arabidopsis thaliana</it>. Indeed, a genomic <it>PSL </it>locus and seven cDNAs affected by alternative splicing have been cloned. In addition, the occurrence of at least two other <it>PSL </it>loci in potato was suggested by the sequence comparison of alternatively spliced transcripts.</p> <p>Phylogenetic analysis on 20 <it>Viridaeplantae </it>showed the wide distribution of <it>PSLs </it>throughout the species and the occurrence of multiple copies only in potato and soybean.</p> <p>The analysis of PSL<sup>FHA </sup>and PSL<sup>PINc </sup>domains evidenced that, in terms of secondary structure, a major degree of variability occurred in PINc domain respect to FHA. In terms of specific active sites, both domains showed diversification among plant species that could be related to a functional diversification among <it>PSL </it>genes. In addition, some specific active sites were strongly conserved among plants as supported by sequence alignment and by evidence of negative selection evaluated as difference between non-synonymous and synonymous mutations.</p> <p>Conclusions</p> <p>In this study, we highlight the existence of PSLs throughout <it>Viridaeplantae</it>, from mosses to higher plants. We provide evidence that <it>PSLs </it>occur mostly as singleton in the analyzed genomes except in soybean and potato both characterized by a recent whole genome duplication event. In potato, we suggest the candidate <it>PSL </it>gene having a role in 2<it>n </it>pollen that should be deeply investigated.</p> <p>We provide useful insight into evolutionary conservation of FHA and PINc domains throughout plant PSLs which suggest a fundamental role of these domains for PSL function.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore