41 research outputs found

    The diatoms test in veterinary medicine: a pilot study on cetaceans and sea turtles

    Get PDF
    Fishing activities are considered one of the most relevant threats for cetaceans and sea turtles con- servation since these animals are sometimes found dead entangled in fishing gears. Currently, postmortem diagnosis is based mainly on the presence of nets and lines on the body and the related marks and injuries evident at gross examination. A more detailed and objective evidence is needed to clarify doubts cases and the diatoms technique, used in forensic human medicine, could support drowning diagnosis also in this field. Diatoms\u2019 investigation was implemented to be applied in ma- rine vertebrate on 8 striped (Stenella coeruleoalba) and 1 bottlenose (Tursiops truncatus) dolphins and 5 sea turtles (Caretta caretta) stranded along the Italian coastlines with a likely cause of death hypothized on necropsies carried out by veterinary pathologists. Diatoms were microscopically searched in the bone marrow collected from long bones implementing protocols used in human medicine and their presence was observed in 4 cetaceans and 2 sea turtles. Despite a clear relation between diatoms\u2019 presence and amount and the likely cause of death was not proved due to the poor number of samples, the higher burden of diatoms was found in 3 animals deemed to be death for the interaction with human activity. Despite more studied are necessary to identify the possible relation between the cause of death and diatoms\u2019 findings, the present study implemented this technique to be adapted to marine animals, confirming its possible application also in veterinary forensic medi- cine

    Efficient isolation on Vero.DogSLAMtag cells and full genome characterization of Dolphin Morbillivirus (DMV) by next generation sequencing

    Get PDF
    The Dolphin Morbillivirus (DMV) genome from the frst Mediterranean epidemic (1990-\u201992) is the only cetacean Morbillivirus that has been completely sequenced. Here, we report the frst application of next generation sequencing (NGS) to morbillivirus infection of aquatic mammals. A viral isolate, representative of the 2006-\u201908 Mediterranean epidemic (DMV_IZSPLV_2008), efciently grew on Vero.DogSLAMtag cells and was submitted to whole genome characterization by NGS. The fnal genome length was 15,673 nucleotides, covering 99.82% of the DMV reference genome. Comparison of DMV_IZSPLV_2008 and 1990-\u201992 DMV strain sequences revealed 157 nucleotide mutations and 47 amino acid changes. The sequence similarity was 98.7% at the full genome level. Whole-genome phylogeny suggested that the DMV strain circulating during the 2006-\u201908 epidemics emerged from the 1990-\u201992 DMV strain. Viral isolation is considered the \u201cgold standard\u201d for morbillivirus diagnostics but efcient propagation of infectious virus is difcult to achieve. The successful cell replication of this strain allowed performing NGS directly from the viral RNA, without prior PCR amplifcation. We therefore provide to the scientifc community a second DMV genome, representative of another major outbreak. Interestingly, genome comparison revealed that the neglected L gene encompasses 74% of the genetic diversity and might serve as \u201chypervariable\u201d target for strain characterization

    Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1β

    Get PDF
    The Notch1 and Notch4 signaling pathways regulate endothelial cell homeostasis. Inflammatory cytokines induce the expression of endothelial adhesion molecules, including VCAM1, partly by downregulating Notch4 signaling. We investigated the role of endothelial Notch1 in this IL-1β-mediated process. Brief treatment with IL-1β upregulated endothelial VCAM1 and Notch ligand Jagged1. IL-1β decreased Notch1 mRNA levels, but levels of the active Notch1ICD protein remained constant. IL-1β-mediated VCAM1 induction was downregulated in endothelial cells subjected to pretreatment with a pharmacological inhibitor of the γ-secretase, which activates Notch receptors, producing NotchICD. It was also downregulated in cells in which Notch1 and/or Jagged1 were silenced.Conversely, the forced expression of Notch1ICD in naïve endothelial cells upregulated VCAM1 per se and amplified IL-1β-mediated VCAM1 induction. Jagged1 levels increased and Notch4 signaling was downregulated in parallel. Finally, Notch1ICD and Jagged1 expression was upregulated in the endothelium of the liver in a model of chronic liver inflammation.In conclusion, we describe here a cell-autonomous, pro-inflammatory endothelial Notch1-Jagged1 circuit (i) triggering the expression of VCAM1 even in the absence of inflammatory cytokines and (ii) enhancing the effects of IL-1β. Thus, IL-1β regulates Notch1 and Notch4 activity in opposite directions, consistent with a selective targeting of Notch1 in inflamed endothelium

    Multidisciplinary studies on a sick-leader syndrome-associated mass stranding of sperm whales (Physeter macrocephalus) along the Adriatic coast of Italy

    Get PDF
    Mass strandings of sperm whales (Physeter macrocephalus) are rare in the Mediterranean Sea. Nevertheless, in 2014 a pod of 7 specimens stranded alive along the Italian coast of the Central Adriatic Sea: 3 individuals died on the beach after a few hours due to internal damages induced by prolonged recumbency; the remaining 4 whales were refloated after great efforts. All the dead animals were genetically related females; one was pregnant. All the animals were infected by dolphin morbillivirus (DMV) and the pregnant whale was also affected by a severe nephropathy due to a large kidney stone. Other analyses ruled out other possible relevant factors related to weather conditions or human activities. The results of multidisciplinary post-mortem analyses revealed that the 7 sperm whales entered the Adriatic Sea encountering adverse weather conditions and then kept heading northward following the pregnant but sick leader of the pod, thereby reaching the stranding site. DMV infection most likely played a crucial role in impairing the health condition and orientation abilities of the whales. They did not steer back towards deeper waters, but eventually stranded along the Central Adriatic Sea coastline, a real trap for sperm whales

    Specific capture and whole‑genome phylogeography of Dolphin morbillivirus

    Get PDF
    Dolphin morbillivirus (DMV) is considered an emerging threat having caused several epidemics worldwide. Only few DMV genomes are publicly available. Here, we report the use of target enrichment directly from cetacean tissues to obtain novel DMV genome sequences, with sequence comparison and phylodynamic analysis. RNA from 15 tissue samples of cetaceans stranded along the Italian and French coasts (2008–2017) was purified and processed using custom probes (by bait hybridization) for target enrichment and sequenced on Illumina MiSeq. Data were mapped against the reference genome, and the novel sequences were aligned to the available genome sequences. The alignment was then used for phylogenetic and phylogeographic analysis using MrBayes and BEAST. We herein report that target enrichment by specific capture may be a successful strategy for whole-genome sequencing of DMV directly from field samples. By this strategy, 14 complete and one partially complete genomes were obtained, with reads mapping to the virus up to 98% and coverage up to 7800X. The phylogenetic tree well discriminated the Mediterranean and the NE-Atlantic strains, circulating in the Mediterranean Sea and causing two different epidemics (2008–2015 and 2014–2017, respectively), with a limited time overlap of the two strains, sharing a common ancestor approximately in 1998

    Toxoplasma gondii Genetic Diversity in Mediterranean Dolphins

    Get PDF
    Toxoplasma gondii constitutes a major zoonotic agent but also has been frequently identified as an important cause of clinical disease (e.g., abortion, pneumonia, encephalitis) in wildlife; specifically, T. gondii has been associated with neurological disease in cetaceans. This study investigated the genetic diversity of T. gondii strains involved in infections in dolphins found stranded in the Mediterranean coastlines of Italy. Tissue samples from 16 dolphins (Stenella coeruleoalba and Tursiops truncatus species) positive for T. gondii-DNA presence by PCR were examined by histology and subjected to further genetic characterization of strains detected by PCR-RFLP and multilocus PCR-sequencing assays. According to fully genotyped samples, the genotypes ToxoDB#3 (67%) and #2 (22%) were detected, the latter being reported for the first time in cetaceans, along with a mixed infection (11%). Subtyping by PCR-seq procedures provided evidence of common point mutations in strains from southwestern Europe. Despite evidence of T. gondii as a cause of neurological disease in dolphins, sources of infections are difficult to identify since they are long-living animals and some species have vast migration areas with multiple chances of infection. Finally, the genetic diversity of T. gondii found in the dolphins studied in the Mediterranean coastlines of Italy reflects the main genotypes circulating inland in the European continent

    Cases of bed bug (Cimex lectularius) infestations in Northwest Italy

    Get PDF
    Bed bugs (Cimex lectularius) have been a common problem for humans for at least 3,500 years and in Europe their presence was endemic until the end of World War II, when infestations began to decrease. However, since the beginning of the 21st century new cases of infestations have been reported in developed countries. Many theories have been put forward to explain this change of direction, but none has been scientifically proven. The aim of this study is to provide some reports of bed bug infestations in Northern Italy (Liguria, Piedmont and Aosta valley regions) and a brief summary about their identification, clinical significance, bioecology and control. From 2008 to date, 17 bed bug infestations were identified in Northwest Italy. Knowledge about the presence and distribution of bed bugs in Italy is scanty, prior to this work only 2 studies reported the comeback of these arthropods in the Italian territory; further investigations would be necessary to better understand the current situation

    SARS-CoV-2, a Threat to Marine Mammals? A Study from Italian Seawaters

    No full text
    Zoonotically transmitted coronaviruses were responsible for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), causing the dramatic Coronavirus Disease-2019 (CoViD-19) pandemic, which affected public health, the economy, and society on a global scale. The impact of the SARS-CoV-2 pandemic permeated into our environment and wildlife as well; in particular, concern has been raised about the viral occurrence and persistence in aquatic and marine ecosystems. The discharge of untreated wastewaters carrying infectious SARS-CoV-2 into natural water systems that are home to sea mammals may have dramatic consequences on vulnerable species. The efficient transmission of coronaviruses raises questions regarding the contributions of virus-receptor interactions. The main receptor of SARS-CoV-2 is Angiotensin Converting Enzyme-2 (ACE-2), serving as a functional receptor for the viral spike (S) protein. This study aimed, through the comparative analysis of the ACE-2 receptor with the human one, at assessing susceptibility to SARS-CoV-2 for different species of marine mammals living in Italian waters. We also determined, by means of immunohistochemistry, ACE-2 receptor localization in the lung tissue from different cetacean species, in order to provide a preliminary characterization of ACE-2 expression in the marine mammal respiratory tracts. Furthermore, to evaluate if and how Italian wastewater management and coastal exposition to extreme weather events may led to susceptible marine mammal populations being exposed to SARS-CoV-2, geomapping data were carried out and overlapped. The results showed the potential SARS-CoV-2 exposure for marine mammals inhabiting Italian coastal waters, putting them at risk when swimming and feeding in specific risk areas. Thus, we highlighted the potential hazard of the reverse zoonotic transmission of SARS-CoV-2 infection, along with its impact on marine mammals regularly inhabiting the Mediterranean Sea, while also stressing the need for appropriate action in order to prevent further damage to specific vulnerable populations
    corecore