35 research outputs found

    Multiple drug-susceptibility screening in Mycobacterium bovis: new nucleotide polymorphisms in the embB gene among ethambutol susceptible strains

    Get PDF
    Objectives: Pyrazinamide-resistant Mycobacterium bovis isolates of animal origin were assessed for drug susceptibility to five antituberculosis drugs by the agar based Middlebrook 7H11 method as gold standard as well as by a simplified, dichotomous resazurin microtitre assay (d-REMA). Methods: A total of 53 M. bovis isolates were typed and tested against isoniazid, rifampin, streptomycin, ethambutol, kanamycin and the control drug pyrazinamide. On the basis of the results obtained, pncA and embB genes were PCR-amplified and DNA-sequenced for all isolates. Results: All M. bovis isolates, classified into 21 spoligotype/MIRU-VNTR profiles, were resistant to pyrazinamide by both methods, as expected. The pncA gene sequencing confirmed the presence of the resistance-conferring H57D mutation. All strains were found to be susceptible to the other five drugs by the agar based gold standard method. The d-REMA was in agreement with these results for all five drugs, with the exception of 12 isolates, which showed ambiguous and therefore inconclusive results in ethambutol testing. Mutations in the embB gene were observed in all 53 isolates: four new single-nucleotide polymorphisms were identified. No association was found between embB genetic profiles and ethambutol resistance results by the gold standard. Conclusion: All M. bovis isolates were sensitive to the most common antituberculosis drugs used for treatment. There was a good agreement between the d-REMA assay and the agar based reference method. Among ethambutol susceptible isolates, four new embB mutations were found

    A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain

    Get PDF
    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has "generally recognized as safe" (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found in L. lactis-inoculated glands. The above findings seem to suggest that food-grade L. lactis at a high-inoculum dose such as an overnight culture may elicit a suppurative inflammatory response in the mammary gland, thus becoming a potential mastitis-causing pathogen. Because of the unpredictable potential of L. lactis in acting as a potential mastitis pathogen, this organism cannot be considered a safe treatment for bovine mastitis

    Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens.

    Get PDF
    Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials, however their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1-16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1-16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, by X-ray crystallography and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Staphylococcus aureus. Two peptides out of five, acquired a weak membrane-perturbing activity, while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, suggesting that they obtained a novel route to enter bacterial cells. PrAMP-derived compounds could become new-generation antimicrobials to combat the antibiotic-resistant pathogens

    Effects of Lipidation on a Proline-Rich Antibacterial Peptide

    No full text
    The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria by inhibiting protein synthesis after its internalization, which is mainly supported by the bacterial transporter SbmA. In this study, we tested two different lipidated forms of Bac7(1-16) with the aim of extending its activity against those bacterial species that lack SbmA. We linked a C12-alkyl chain or an ultrashort cationic lipopeptide Lp-I to the C-terminus of Bac7(1-16). Both the lipidated Bac-C12 and Bac-Lp-I forms acquired activity at low micromolar MIC values against several Gram-positive and Gram-negative bacteria. Moreover, unlike Bac7(1-16), Bac-C12, and Bac-Lp-I did not select resistant mutants in E. coli after 14 times of exposure to sub-MIC concentrations of the respective peptide. We demonstrated that the extended spectrum of activity and absence of de novo resistance are likely related to the acquired capability of the peptides to permeabilize cell membranes. These results indicate that C-terminal lipidation of a short proline-rich peptide profoundly alters its function and mode of action and provides useful insights into the design of novel broad-spectrum antibacterial agents

    In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens.

    No full text
    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions

    Adhesion and invasion capabilities.

    No full text
    <p>Inoculum levels, adhesion capabilities to and invasion abilities in BME-UV1 of <i>L</i>. <i>lactis</i> and mastitis-causing pathogens alone and in presence of <i>L</i>. <i>lactis</i> LMG 7930 after 2 h of incubation at 37°C are shown. Results are expressed as medians and interquartile ranges of CFU/ml values.</p

    Mastitis-causing pathogens considered in the study.

    No full text
    <p>Mastitis-causing pathogens considered in the study.</p

    Antibiotic susceptibility profile of <i>L</i>. <i>lactis</i> LMG 7930.

    No full text
    <p>Antibiotic susceptibility profile of <i>L</i>. <i>lactis</i> LMG 7930.</p

    Auto-aggregation abilities of <i>L</i>. <i>lactis</i> LMG 7930 and mastitis-causing pathogens.

    No full text
    <p>Auto-aggregation abilities of <i>L</i>. <i>lactis</i> LMG 7930 and mastitis-causing pathogens.</p
    corecore