137 research outputs found

    Final Environmental Impact Statement C.J. Strike Project Idaho, FERC Project No. 2055

    Get PDF
    Idaho Power Company (Idaho Power) filed an application for a new license for the existing C.J. Strike Project located on the Snake River and Bruneau River in Owyhee and Elmore Counties, Idaho, between the towns of Grandview and Bruneau. A major issue in this relicensing proceeding is how project-induced water-level fluctuations from load following operations affect aquatic and terrestrial resources. The final environmental impact statement (final EIS) presents the staff\u27s evaluation of the developmental and nondevelopmental consequences of Idaho Power\u27s Proposal and three alternatives: the No-action Alternative, the Idaho Power Proposal with Modifications, and the Run-of River Alternative. We make no recommendations on a preferred alternative in this final EIS

    Local field topology behind light localization and metamaterial topological transitions

    Get PDF
    We revisit the mechanisms governing the sub-wavelength spatial localization of light in surface plasmon polariton (SPP) modes by investigating both local and global features in optical powerflow at SPP frequencies. Close inspection of the instantaneous Poynting vector reveals formation of optical vortices - localized areas of cyclic powerflow - at the metal-dielectric interface. As a result, optical energy circulates through a subwavelength-thick 'conveyor belt' between the metal and dielectric where it creates a high density of optical states (DOS), tight optical energy localization, and low group velocity associated with SPP waves. The formation of bonding and anti-bonding SPP modes in metal-dielectric-metal waveguides can also be conveniently explained in terms of different spatial arrangements of localized powerflow vortices between two metal interfaces. Finally, we investigate the underlying mechanisms of global topological transitions in metamaterials composed of multiple metal and dielectric films, i.e., transitions of their iso-frequency surfaces from ellipsoids to hyperboloids, which are not accompanied by the breaking of lattice symmetry. Our analysis reveals that such global topological transitions are governed by the dynamic local re-arrangement of local topological features of the optical interference field, such as vortices and saddle points, which reconfigures global optical powerflow within the metamaterial. These new insights into plasmonic light localization and DOS manipulation not only help to explain the well-known properties of SPP waves but also provide useful guidelines for the design of plasmonic components and materials for a variety of practical applications.Comment: 25 pages, 9 figures, Ch. 8 of Singular and Chiral Nanoplasmonics (S.V. Boriskina and N.I. Zheludev Eds.) Pan Stanford, Singapore, 201

    Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    Get PDF
    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.Comment: Submitted to Phys Rev
    • …
    corecore