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We revisit the mechanisms governing the sub-wavelength spatial 

localization of light in surface plasmon polariton (SPP) modes by 

investigating both local and global features in optical powerflow at SPP 

frequencies. Close inspection of the instantaneous Poynting vector 

reveals formation of optical vortices – localized areas of cyclic powerflow 

– at the metal-dielectric interface. As a result, optical energy circulates 

through a subwavelength-thick ‘conveyor belt’ between the metal and 

dielectric where it creates a high density of optical states (DOS), tight 

optical energy localization, and low group velocity associated with SPP 

waves. The formation of bonding and anti-bonding SPP modes in metal-

dielectric-metal waveguides can also be conveniently explained in terms 

of different spatial arrangements of localized powerflow vortices 

between two metal interfaces. Finally, we investigate the underlying 

mechanisms of global topological transitions in metamaterials composed 

of multiple metal and dielectric films, i.e., transitions of their iso-
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frequency surfaces from ellipsoids to hyperboloids, which are not 

accompanied by the breaking of lattice symmetry.  Our analysis reveals 

that such global topological transitions are governed by the dynamic local 

re-arrangement of local topological features of the optical interference field, 

such as vortices and saddle points, which reconfigures global optical 

powerflow within the metamaterial. These new insights into plasmonic 

light localization and DOS manipulation not only help to explain the 

well-known properties of SPP waves but also provide useful guidelines 

for the design of plasmonic components and materials for a variety of 

practical applications. 

8.1   INTRODUCTION 

Tailored light interactions with metal surfaces and nanostructures can 

generate coherent collective oscillations of photons and free electrons – 

known as surface plasmons [1-3]. These hybrid collective states can be 

supported both by planar metal-dielectric interfaces in the form of 

surface plasmon polariton (SPP) waves and by metal particles and 

nanostructures in the form of localized surface plasmon (LSP) modes. 

Unique physical characteristics of plasmonic modes include extreme 

spatial field localization, high density of optical states (DOS), and low 

group velocity. These features open up new opportunities for nanoscale 

trapping and manipulation of light with applications in sensing [4-7], 

spectroscopy [8-13], on-chip communications [14, 15], and solar energy 

harvesting [16-24].  

It has recently been revealed that some of the unique features 

associated with plasmonic effects on nanoparticles and particle clusters 

can be explained by the unusual pathways of nanoscale optical 

powerflow in the immediate vicinity of the metal nanostructures [25-29]. 

The local optical powerflow at each point in space is uniquely defined by 

the presence of local topological features in the phase of the optical 

interference field close to this point. Local topological features include 

phase singularities – points or lines in space where the field intensity is 

zero due to destructive interference. At these phase singularities, the 

phase field is undefined. Other types of local topological features are 

stationary phase nodes – points or lines in space where the phase 

gradient vanishes [27, 30-33]. The stationary phase nodes include local 



 
8.1   Introduction   3

 

 

extrema (i.e., phase maxima and minima) as well as phase saddle nodes 

as shown in Fig. 8.1a.  

Because the optical power always flows in the direction of the phase 

change, the phase maxima (minima) give rise to the powerflow sinks 

(sources) while phase saddle points give rise to saddle nodes in the 

powerflow (Fig. 8.1c). Likewise, optical phase singularities (illustrated in 

Fig. 8.1b) are accompanied by the circulation of optical powerflow, 

resulting in the formation of so-called optical vortices (or centers of 

power flow) as shown in Fig. 8.1d. Both saddle points and vortices are 

classified as local topological features because they are characterized by 

 

Figure 8.1. Local topological features in the optical phase field and powerflow. 
(a) Phase saddle node – a stationary point (or line) where the phase gradient 
vanishes. (b) Optical phase singularity – a point (or line) of destructive 
interference where the field intensity vanishes and the phase is undefined (i.e., 
all values of phase from 0 to 2π co-exist). (c) The optical powerflow saddle point 
corresponding to the phase saddle point in (a). (d) The optical powerflow vortex 
corresponding to the phase singularity in (b).  
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conserved quantities such as the topological charge [30, 34, 35]. The 

topological charge is the net phase change in a closed loop enclosing the 

local feature (quantized in units of 2π), which is positive if the phase 

increases in a right-handed sense. Overall, local topological features 

‘constitute a ‘skeleton’ on which the phase and intensity structure hangs’ [32]. 

The role of local topological features in the modification of nanoscale 

powerflow causing the well-known phenomenon of enhanced light 

absorption by small metal nanoparticles – with the absorption cross-

section larger than the geometric cross-section – has been revealed by 

Craig Bohren in 1983. He demonstrated the reversal of optical powerflow 

in the shadow region behind the particle [36] illuminated by an 

electromagnetic plane wave at a frequency corresponding to the particle 

dipole surface plasmon mode. This flow reversal follows the local optical 

phase landscape, which is shaped by the presence of local topological 

features such as powerflow saddle points (Fig. 8.2a) above and inside the 

particle [27, 37-39]. In all the panels of Fig. 8.2, the large orange arrows 

indicate the direction of the incident wave, while the little arrows or 

streamlines illustrate the direction of the powerflow. The powerflow 

intensity at each point is defined by either the arrow length or the 

streamline density. The corresponding intensity distribution of the 

electric field is plotted in the background. Two decades later, it was 

found that local topological features in the near-field region of metal 

nanoparticles can form not only at the frequency of their local surface 

plasmon resonance (LSP) but also under off-resonance illumination by 

light as shown in Fig. 8.2b [39]. These features include powerflow saddle 

points as well as nanoscale optical vortices (Fig. 8.2b) [39]. The complex 

near-field phase landscape around isolated nanoparticles can be 

manipulated by tuning their sizes, shapes, and materials characteristics. 

Continuous change of these parameters results in nucleation, spatial 

drift, and annihilation of local topological features [37, 40].  

It was later discovered that new plasmonic effects emerge due to 

tailored coupling of nanoscale powerflows generated around individual 

particles. In particular, the local powerflow picture driven by the 

formation and coupling of nanoscale optical vortices helped to explain 

the extreme nano-focusing of light in snowmen-like plasmonic 

nanolenses composed of three neighboring nanospheres of progressively 

smaller size [26, 27, 41]. This is illustrated in Fig. 8.2c, which shows how 

the circulating powerflows formed on each sphere merge and recirculate 
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the optical energy through the narrow inter-particle gaps, resulting in 

the build-up of intensity in the gaps. As illustrated in Fig. 8.2d, optical 

vortices formed in the vicinity of nanoscale plasmonic antennas due to 

light scattering from neighboring antennas can lead to enhanced light 

absorption in or enhanced light scattering from the nanoantennas [42].  

 

Figure 8.2.  Local-topology-driven powerflow around metal nanoparticles. (a) 
Enhanced light absorption by a nanoparticle owing to the powerflow saddle 
point in its shadow (adapted with permission from [27] ©RSC). (b) Counter-
rotating optical vortices on a nanosphere (adapted with permission from [33] 
©OSA). (c) Coupled optical vortices in the plasmonic nanolens (adapted with 
permission from [27] ©RSC). (d) Optical vortices induced on plasmonic antennas 
by light scattered from another antenna (reproduced with permission from [36] 
© WILEY). (e) Coupled optical vortices ‘pinned’ to a linear chain of nanoparticle 
dimers form a linear transmission-like sequence (adapted with permission from 
[25] ©ASC). (f) Vortices formed in the Silicon slab due to light scattering from 
embedded metal nanoparticles (adapted with permission from [38] ©OSA).  
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However, proper engineering of optical powerflow around 

plasmonic nanostructures can enable suppression of both optical 

scattering and material absorption. In particular, it has been shown that 

to reduce dissipative losses in metals, the structures need to be designed 

to ‘pin’ optical vortices that recirculate optical energy outside of the 

metallic particles (Fig. 8.2e) [25-29]. This approach enables generation of 

narrow-band resonant features in the optical spectra of plasmonic 

nanostructures. It can also be used to achieve enhanced absorption in the 

host material (e.g. semiconductor) rather than in metal, as shown in Fig. 

8.2f. These results therefore pave the way for vortex-pinning 

nanostructures to be used to enhance absorption in thin-film 

photovoltaic cells [25-27, 29, 43, 44]. 

The results presented in Fig. 8.2 clearly demonstrate that formation of 

local topological features and the resulting recirculation of the optical 

power through metal nanostructures are behind many interesting 

plasmonic effects such as extreme nano-focusing of light and electric 

field intensity enhancement. In this chapter, we demonstrate that 

localized topological features play a much larger role in various 

plasmonic effects than it has been recognized to date. We start with the 

simplest SPP wave on a metal-dielectric interface and then extend the 

analysis to metal-insulator-metal waveguides and to so-called hyperbolic 

metamaterials [45]. Close inspection of the local field phase profiles and 

optical powerflow in the vicinity of the metal surfaces reveals formation 

of localized areas of circulating powerflow that recycles optical energy 

between metal and dielectric volumes. Such recirculation translates into 

the tight light localization of the SPP mode field on the surface, the large 

in-plane wavevector of SPP waves, and the resulting slowing of the 

wave propagation along the metal-dielectric interfaces.  

In the following sections, we will discuss how the insights into the 

spatial structure of the localized topological features in the near field of 

plasmonic components and materials help to better understand their 

properties, to predict and exploit new plasmonic effects, and to design 

next generation plasmonic devices with improved performance. 

8.2   BACK TO BASICS: SURFACE PLASMON POLARITON 

The most studied and written about plasmonic effect is the excitation of 

surface plasmon polariton waves propagating along metal-dielectric 
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interfaces. SPP modes are TM polarized surface waves, which are 

characterized by large wavevectors parallel to the interface and low 

group velocities. As a result, they create strong electric field and high 

local density of optical states (LDOS) within the sub-wavelength-thick 

layer adjacent to the interface. These waves can only exist on interfaces 

between materials having dielectric permittivity values of opposite signs. 

Dielectric permittivities of materials with a high density of free charge 

carriers – such as metals and highly doped semiconductors – are defined 

by the Drude model,   )()( 22  ipm   , where 2
p  is the 

plasma frequency, e¥  is the high-frequency permittivity limit, and g  is 

the electron collision frequency. The real part of the Drude permittivity 

becomes negative in the frequency range below the plasma frequency of 

the material. This makes possible SPP propagation along their interfaces 

with other materials.  

An eigensolution of the electromagnetic boundary problem for the 

Maxwell equations on such an interface (shown in Fig. 8.3a) that 

describes the SPP mode has the following form [15]:   
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y
z( ) = Aeibxe-k

2
z
  

0 :z     22

0 2

 k zi x

x

k
E z iA e e

 

  (8.1) 

   2

0 2

 k zi x

zE z A e e

 

   

and 

   1 k zi x

yH z Ae e   

0 :z     11

0 1

 k zi x

x

k
E z iA e e

 
  (8.2) 

   1

0 1

 k zi x

zE z A e e

 
   

Here, A is an arbitrary amplitude of the magnetic field, ω is the angular 

frequency, ε0 is the vacuum permittivity, εi is the relative permittivity of 

the i-th medium, β is the component of the wave vector parallel to the 
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interface, and ki is the component of the wavevector in the i-th medium 

normal to the interface. Upon applying continuity boundary conditions 

to field expressions (8.1) and (8.2), a dispersion relation can be obtained 

as follows: 

 

Figure 8.3.  Circulating powerflow behind tight light localization and low group 
velocity in Surface Plasmon Polariton waves. (a) Schematic of the planar metal-
dielectric interface and the coordinate system used in the analysis. (b) The 
dispersion characteristics of the waves supported by the structure in (a). The 
inset shows an iso-frequency surface of the allowed photon momenta above the 
interface at the frequency close to the plasma frequency in the plasmonic 
material. (c,d) The electric (c) and magnetic field components of the SPP wave. 
(e) The time-averaged optical powerflow around the material interface. (f) The 
corresponding instantaneous powerflow at t=0. All the field distributions were 
calculated at w=4.974x1015 rad/s. 
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where k0 is the vacuum wave vector. The solution to equation (8.3) is 

plotted in Fig. 8.3b, and the branch corresponding to the SPP mode has a 

familiar flat dispersion form, reaching to infinite momentum values in 

the absence of dissipative losses in metal. Of course some level of losses 

is inevitable in real materials; however, to make the following argument 

simple and straightforward without the loss of generality, we are going 

to consider an idealized case of lossless materials (i.e., g = 0 ). In this case, 

the longitudinal component of the SPP wave vector that is a solution to 

dispersion equation (8.3) is purely real, while the normal component is 

purely imaginary. For all subsequent calculations in this section, the 

permittivities of the dielectric and metal are chosen to be silicon dioxide 

and silver respectively [46, 47]. For Ag, we only used the data for the real 

part of the permittivity and neglected the dissipative term. However, as 

will be shown in the next section, the analysis and conclusions are valid 

for the general case of materials with dissipative losses.  

The momentum-space iso-frequency surface for the dielectric material 

just above the interface around the SPP frequency is shown in the inset 

to Fig. 8.3b [29]. This surface contains all the allowed k-vectors, and is a 

combination of a sphere corresponding to the propagating waves and a 

ring corresponding to the high-momentum SPP branch of the dispersion 

equation (8.3). In the absence of dissipative losses, the ring extends to 

infinity, which is in stark contrast with the finite-size spherical iso-

frequency surface of regular materials. Even if dissipative losses are 

present, the number of allowed photon momenta at the interface is 

dramatically increased, resulting in the high local density of optical 

states (LDOS) and thus in the high electromagnetic energy density of the 

SPP mode. However, a high LDOS and a high intensity of both electric 

and magnetic fields (Figs. 8.3c,d) are only observed in close vicinity to 

the material interface. Away from the interface, the LDOS and intensity 

drop off exponentially.  

To get deeper insight into the mechanisms that squeeze the optical 

energy of the SPP wave to the region just around the interface, we study 

the optical powerflow at the SPP frequency. The direction and intensity 

of the time-averaged optical powerflow at each point of space can be 

characterized by the Poynting vector, which is calculated as follows: 
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In the simple geometry of Fig. 8.3a, we can derive an analytical form 

of the time-averaged Poynting vector for each medium. Substitution of  

(8.1) and (8.2) into (8.4) yields the following expressions for the time-

averaged powerflow above and below the interface: 
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Comparison of (8.5) and (8.6) immediately shows that the power flow 

parallel to the interface reverses direction abruptly when crossing from 

one medium to the other. The plot of the time-averaged powerflow 

shown in Fig. 8.3e visualizes the above observation. The time-averaged 

Poynting vector component in the vertical direction has a purely 

imaginary value, which is a signature of a reactive powerflow. In 

electromagnetic circuits, reactive power is the portion of power 

associated with the stored energy that returns to the source in each cycle 

and transfers no net energy to the load [48]. Reactive power is always a 

factor in alternating current circuits such as electrical grids, where 

energy recycling through storage elements (i.e., inductors and 

capacitors) causes periodic reversals in the direction of energy flow.  

Although the reactive powerflow does not deliver any useful energy to 

the load, it assists in maintaining proper voltages across the power 

system. Reactive powerflow is manifested in measurable dissipative 

losses due to periodic energy recycling through the grid and sudden 

disruptions in the reactive powerflow pattern can cause a voltage drop 

along the line [49]. Likewise, the reactive powerflow away from the metal-

dielectric interface associated with the SPP propagation along the interface 

does not contribute to the net energy transfer. The power is temporarily 

stored in the form of magnetic and electric fields. 

As the SPP mode is an eigensolution of the Maxwell equations rather 

than a wave generated by either a localized source or a plane wave, an 

insight into its energy storage mechanism can be gained by plotting the 

instantaneous Poynting vector distribution [50]. The instantaneous 
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optical powerflow at any given moment in time can be calculated as 

follows:  

    *1 1

2 2
 i tS Re E H Re E He    . (8.7) 

It can be seen that the time-averaged powerflow expression (8.4) is 

represented by the first term in (8.7), and the second term drops out due 

to its sinusoidal behavior when performing the averaging procedure. 

The instantaneous Poynting vector of the SPP wave is plotted in Fig. 8.3e 

and features repeating areas of circulating optical powerflow centered on 

the metal-dielectric interface. These data lead us to the conclusion that 

electromagnetic energy recycling through local optical vortices on the 

interface is behind tight field localization, high energy density, and 

reduced group velocity of the SPP waves. The new look at the old 

problem provided by revealing the circulating powerflow also offers a 

new take on the meaning of the large in-plane k-vector photon states that 

only exist very close to the interface supporting SPP waves. The circulating 

instantaneous SPP optical powerflow is characterized by the photon 

angular momentum, which has a conserved value at every point in space 

[51]. In turn, the value of the linear momentum that is tangential to the 

circulating powerflow scales inversely with the distance to the 

powerflow center (i.e., with the distance to the metal-dielectric interface). 

The tangential momentum in the direction perpendicular to the interface 

is canceled out by the time averaging, leaving only the in-plane 

tangential momentum, which, in turn, drops off away from the interface.  

8.3   SPP COUPLING VIA SHARED CIRCULATING POWERFLOW 

Another interesting class of plasmonic waveguiding platforms is a metal-

insulator-metal (MIM) structure, which guides optical energy along a 

narrow slot between two metal interfaces. In such plasmon slot 

waveguides optical mode volumes can be reduced to sub-wavelength 

scales while suffering low decay even for frequencies far from the 

plasmon resonance [52]. A schematic of the MIM plasmon slot 

waveguide is shown in Figs. 8.4a and 8.5a, and the dispersion 

characteristics are plotted in Figs. 8.4b and 8.5b. The dispersion 
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characteristics are obtained by solving the matrix equation with the 

appropriate boundary conditions on both metal-dielectric interfaces: 

   2 1
1

1 2

Odd mode : tanh  
k

k a
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
 . (8.8) 
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Figure 8.4.  Shared circulating powerflow of the odd SPP mode in a MIM 
plasmon slot waveguide. (a) Schematic of the MIM waveguide and the 
coordinate system. (b) The dispersion characteristics of the SPP modes supported 
by the structure in (a). The green curve is the dispersion branch corresponding to 
the odd mode. (c,d) The electric (c) and magnetic field components of the odd 
SPP mode. (e) The time-averaged optical powerflow in the MIM waveguide. (f) 
The corresponding instantaneous powerflow at t=0. All field distributions were 
calculated at w=4.974x1015 rad/s. 
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Dispersion relations (8.8) and (8.9) correspond to the modes with 

tangential electric field distributions that are either symmetric (even 

mode) or anti-symmetric (odd mode) with respect to the waveguide axis. 

The near-field patterns of the electric and magnetic fields of the odd SPP 

mode are plotted in Figs. 8.4c and 8.4d, respectfully, and the time-

averaged optical powerflow is shown in Fig. 8.4e. Similar to the case of a 

single metal-dielectric interface, the time-averaged power inside and 

 

Figure 8.5.  Shared circulating powerflow of the even SPP mode in a MIM 
plasmon slot waveguide. (a) Schematic of the MIM waveguide and the 
coordinate system. (b) The dispersion characteristics of the SPP modes 
supported by the structure in (a). The red curve is the dispersion branch 
corresponding to the even mode. (c,d) The electric (c) and magnetic field 
components of the even SPP mode. (e) The time-averaged optical powerflow in 
the MIM waveguide. (f) The corresponding instantaneous powerflow at t=0. All 
field distributions were calculated at w=4.974x1015 rad/s. 
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outside the dielectric slot waveguide flows in opposite directions. The 

recycling of energy between the backward and forward flow channels is 

achieved via coupling of circulating powerflows around each interface, 

which is revealed in the instantaneous Poynting vector distribution 

plotted in Fig. 8.4f. Figure 8.5 illustrates the same characteristics of the 

even coupled-SPP mode of the plasmon slot waveguide, which 

corresponds to the higher-energy branch in the waveguide dispersion 

characteristics (see Fig. 8.5b). The differences in the coupling mechanism 

underlying formation of even and odd modes are illustrated in Figs. 8.4f 

and 8.5f. The instantaneous Poynting vector field of the odd coupled-SPP 

mode is characterized by merging of the circulating powerflows formed 

on each material interface (Fig. 8.4f). In contrast, the circulating 

powerflows of the even SPP mode collide at the slot waveguide center 

(Fig. 8.5f), which results in the blue-shift of the corresponding dispersion 

curve (Fig. 8.5b). 

8.4   HYPERBOLIC METAMATERIALS: GLOBAL FIELD TOPOLOGY 
DEFINED BY LOCAL TOPOLOGICAL FEATURES  

Even more interesting optical effects can be engineered via near-field 

optical coupling between SPP waves formed on multiple stacked M-I 

interfaces. The resulting anisotropic nanostructured metal-dielectric 

material is schematically shown in Fig. 8.6a. Mutual electromagnetic 

coupling of SPP modes across multiple M-I interfaces results in the 

formation of several SPP branches in the dispersion characteristics of 

such anisotropic structures (shown in Fig. 8.6b). Here and in the 

following figures the thicknesses of the Ag and TiO2 layers are 9nm and 

22nm, respectively, and the dissipative losses in Ag are fully accounted 

for. The presence of multiple high-k branches seen in Fig. 8.6b increases 

the bandwidth of the plasmonic-enhanced high-DOS spectral region 

over that of the SPP on a single interface [29].  

Accurate solutions for the dispersion of the multilayered 

metamaterial plotted in Fig. 8.6b were obtained by using the analytical 

transfer matrix method. However, in the limit of an infinite number of 

ultra-thin layers, the multilayered metamaterials shown in Fig. 8.6a can 

be described within an effective index model by a uniaxial effective 

dielectric tensor  zzyyxxdiag  ,,ˆ   [45, 53-58]. If ||  yyxx  and 

0||  zz , the anisotropic metamaterial dispersion relation 
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  ||
22222  zzzyx kkkc   transforms from having a closed shape, i.e., 

ellipsoid, to an open one, i.e., hyperboloid as shown in Fig. 8.6c [45, 53-

58]. This topological transition from an ordinary to a so-called hyperbolic 

photonic metamaterial (HMM) is an analog of the Lifshitz topological 

transition in superconductors [59] when their Fermi surfaces undergo 

transformation under the influence of external factors such as pressure 

or magnetic fields. In the same manner that the Lifshitz transition leads 

to dramatic changes in the electron transport in metals [60, 61], the 

topological transition of the photonic metamaterial has a dramatic effect 

on its DOS and photon transport characteristics. This enables 

development of novel devices with enhanced optical properties 

including super-resolution imaging, optical cloaking, and enhanced 

radiative heat transfer [45, 53-58]. The spectral region that includes the 

 

Figure 8.6. Metal-dielectric hyperbolic metamaterials: SPP modes dispersion 
and iso-frequency surfaces. (a) Schematic of a multilayered metamaterial (metal 
layers are yellow-colored). (b) Modal dispersion characteristics of the 
metamaterial. (c) Momentum-space representation of the dispersion relations 
(iso-frequency surfaces) in two frequency ranges where the metamaterial 
undergoes a topological transition from an ordinary material to HMM, with 
allowed wavevectors shown as red arrows. 
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high-energy branches of the dispersion corresponds to the metamaterial 

transformation into a type I hyperbolic regime. The type I HMM is 

characterized by a single negative component of the dielectric tensor, 

which is perpendicular to the interface. A type II HMM (corresponding 

to the spectral region overlapping low-energy dispersion branches) 

features two negative in-plane components of the dielectric tensor.    

In the following, we will reveal that the global topological transition 

of the multilayered metamaterial into the hyperbolic regime is driven by 

the collective dynamics of local topological features in the 

electromagnetic field such as nucleation, migration, and annihilation of 

nanoscale optical vortices. It has been already shown both theoretically 

and experimentally that the high DOS in the hyperbolic metamaterial 

strongly modifies radiative rates of quantum emitters such as quantum 

dots positioned either inside or close to the HMM [53, 55, 56]. To reveal 

the local electromagnetic field topology underlying this process, we 

consider radiation of a classical electric dipole located in air just outside 

 

Figure 8.7. Dipole radiation into the type I hyperbolic metamaterial. (a) Electric 
field intensity distribution inside a 10-period-thick Ag/TiO2 multilayer structure 
generated by a classical electric dipole shown as the orange arrow. (b) Optical 
powerflow from the dipole source through the metamaterial. (c) A magnified 
view of the region in (b) inside the orange rectangle. In (b) and (c), the Poynting 
vector streamlines (white) indicate the local direction of the powerflow, and the 
background color map shows the time-averaged Poynting vector intensity 
distribution. The orange arrows in (c) highlight the global powerflow direction. 
In all the panels, the excitation wavelength is 350nm.  
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the HMM slab (as shown Figs. 8.6-8.9). The dipole is separated from the 

metamaterial slab by a 10nm-thick TiO2 spacer layer, which is a typical 

configuration in the experiment that helps to avoid quenching of 

quantum emitters such as quantum dots via non-radiative energy 

transfer to the metamaterial slab [53, 55, 56].  

Figures 8.7 and 8.8 demonstrate how the metamaterial in the type I 

and type II hyperbolic regimes modifies radiation and transport of 

photons emitted by a dipole source. The availability of high-k states in 

the HMM provides additional channels for the dipole to radiatively 

decay and increases the electromagnetic energy density within the 

metamaterial. As a result, the dipole source emission pattern becomes 

strongly asymmetrical with most of the energy being channeled through 

the metamaterial. Furthermore, as revealed by Fig. 8.7, for the 

metamaterial in the type I hyperbolic regime, energy transport through 

the material is very directional. Most of the optical power flows through 

a narrow channel across the metamaterial without experiencing 

significant lateral spread within the metamaterial slab. A detailed picture 

of the local topological features that drive the directional powerflow 

 

Figure 8.8.  Dipole radiation into the type II hyperbolic metamaterial. (a) Electric 
field intensity distribution inside a 10-period-thick Ag/TiO2 multilayer structure 
generated by a classical electric dipole shown as the orange arrow. (b) Optical 
powerflow from the dipole source through the metamaterial. (c) A magnified 
view of the region in (b) inside the orange rectangle. In (b) and (c), the Poynting 
vector streamlines (white) indicate the local direction of the powerflow, and the 
background color map shows the time-averaged Poynting vector intensity 
distribution. The orange arrows in (c) highlight the global powerflow direction. 
In all the panels, the excitation wavelength is 650nm. 
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across the metamaterial is shown in Figs. 8.7b and 8.7c. It should be 

noted that in Figs. 8.7-8.9 we plot the time-averaged powerflow defined by 

(8.4) rather than the instantaneous powerflow. Multiple areas of coupled 

vortex powerflow are clearly visible and their spatial arrangement favors 

an overall directional power flow by preventing lateral energy spread. 

The local-topology-driven directional energy transport across the HMM 

slab also results in the directional emission of the energy by the HMM 

surface, which can be used for the design of directional light sources [62]. 

Likewise, the high DOS within the metamaterial in the type II 

hyperbolic regime results in emission from the dipole source that is 

predominantly into the material. However, the powerflow driven by the 

emitted photons is markedly different from the type I HMM. In contrast, 

the optical powerflow through the type II HMM features significant 

lateral spread, as shown in Fig. 8.8. The local topology of the 

electromagnetic interference field in the metamaterial slab plotted in 

Figs. 8.8b and 8.8c reveals the mechanism driving the lateral energy 

spread. Once again, the formation of multiple coupled counter-rotating 

nanoscale optical vortices drives the global powerflow by recirculating 

the energy around local circulation points. The arrangement of the 

 

Figure 8.9.  Dipole radiation into the multilayer stack outside of the hyperbolic 
regime. (a) Electric field intensity distribution inside a 10-period-thick Ag/TiO2 
multilayer structure generated by a classical electric dipole shown as the orange 
arrow). (b) Optical powerflow from the dipole source through the multilayer. (c) 
A magnified view of the region in (b) inside the orange rectangle. In (b) and (c), 
the time-averaged Poynting vector streamlines (white) indicate the local direction 
of the powerflow, and the background color map shows the Poynting vector 
intensity distribution. The orange arrows in (c) highlight the global powerflow 
direction. In all the panels, the excitation wavelength is 500nm. 
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vortices in this case is different from that in the type I HMM, resulting in 

the markedly different overall powerflow pattern.  

Finally, Fig. 8.9 illustrates the dramatic changes in the powerflow 

through the metamaterial in the photon energy range where the material 

in not in the hyperbolic regime. In this case, the metamaterial DOS is 

significantly lower than that in either type of HMM. This reduces the 

dipole radiative rate resulting in the low energy density within the 

material as shown in Fig. 8.9a. The time-averaged Poynting vector field 

within the material still features areas of circulating powerflow as shown 

in Figs. 8.9b and 8.9c. However, in this case the vortices once again are 

spatially rearranged and form a global energy recirculation network that 

inhibits powerflow across the metamaterial slab. Overall, we can 

conclude that the re-arrangement of the local field topology features is 

behind the global topological transitions in hyperbolic metamaterials.  

8.5   CONCLUSIONS AND OUTLOOK 

We have demonstrated that the formation of optical vortices – 

localized areas of circulating optical powerflow – is a hidden mechanism 

behind many unique characteristics of surface plasmon polariton modes 

on metal-dielectric interfaces. These include tight energy localization in 

the vicinity of the M-I interface and 'structural slow light' characterized 

by the reduced group velocity of SPP waves. Furthermore, a detailed 

understanding of the SPP powerflow characteristics helps to explain the 

existence of photon states with high linear lateral momentum only in 

close proximity to the interface. This is a manifestation of the angular 

momentum of photons recycled through coupled optical vortices formed 

on the interface. Furthermore, our analysis reveals that the formation 

and dynamical reconfiguring of connected networks of coupled optical 

vortices underlies the global topological transitions of artificial M-I 

materials into the hyperbolic regime.  

The above results provide further support for a rational strategy we 

recently developed for the design of photonic components with novel 

functionalities [26, 27]. This bottom-up design strategy is based on the 

accurate positioning of local phase singularities and connecting them 

into coupled networks with the aim of tailoring the global spatial 

structure of the interference field. Understanding the origins and 

exploiting wave effects associated with phase singularities have proven 



20   Local field topology behind light localization and metamaterial topological transitions 

 

to be of high importance in many branches of physics, including 

hydrodynamics, acoustics, quantum physics, and singular optics [63, 64]. 

To date, the most significant advances in optics driven by controllable 

formation of optical vortices have been related to the generation of 

propagating light beams and fiber modes carrying orbital angular 

momentum. This research has far-reaching applications in optical 

trapping and manipulation and offers a way to increase the data 

transmission rates via angular momentum multiplexing mechanisms [51, 

65, 66]. By revealing the role of optical vortices in the unique 

characteristics of surface plasmon waves we not only explain well-

known plasmonic effects but also offer a new bottom-up approach to 

design plasmonic nanostructures and metamaterials with tailored energy 

transport characteristics. This can pave the way to new applications of 

plasmonic materials in optical communications [27, 67, 68], energy 

harvesting from solar and terrestrial heat sources [29], radiative heat 

transfer [29], imaging [69], and sensing [25, 26, 28]. 
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