96 research outputs found

    Monotonic direct simple shear tests on sand under multidirectional loading

    Get PDF
    Stress–strain responses of Leighton Buzzard sand are investigated under bidirectional shear. The tests are conducted by using the variable direction dynamic cyclic simple shear (VDDCSS), which is manufactured by Global Digital Systems (GDS) Instruments Ltd., U.K. Soil samples are anisotropically consolidated under a vertical normal stress and horizontal shear stress and then sheared in undrained conditions by applying a horizontal shear stress acting along a different direction from the consolidation shear stress. The influence of the orientation and magnitude of the consolidation shear stress is investigated in this study. There are only a few previous studies on soil responses under bidirectional shear, of which most studies do not consider the impact of the magnitude of the consolidation shear stress. They are compared with current studies, indicating both similarities and differences. Generally, all test results indicate that a smaller angle between the first and second horizontal shear stress leads to more brittle responses with higher peak strengths, and a larger angle leads to more ductile responses. In addition, the consolidation shear tends to make soil samples denser, and both the magnitude of consolidation shear stress and its direction influence the following stress–strain responses of soil samples

    Autonomy supportive environments and mastery as basic factors to motivate physical activity in children: a controlled laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Choice promotes the experience of autonomy, which enhances intrinsic motivation. Providing a greater choice of traditional active toys may increase children's activity time. Mastery also increases intrinsic motivation and is designed into exergames, which may increase play time of a single exergame, reducing the need for choice to motivate activity compared to traditional active toys. Providing both choice and mastery could be most efficacious at increasing activity time. The energy expenditure (EE) of an active play session is dependent on the duration of play and the rate of EE during play. The rate of EE of exergames and the same game played in traditional fashion is not known. The purpose was to test the basic parameters of choice and mastery on children's physical activity time, activity intensity, and energy expenditure.</p> <p>Methods</p> <p>44 children were assigned to low (1 toy) or high (3 toys) choice groups. Children completed 60 min sessions with access to traditional active toys on one visit and exergame versions of the same active toys on another visit.</p> <p>Results</p> <p>Choice had a greater effect on increasing girls' (146%) than boys' (23%) activity time and on girls' (230%) than boys' (minus 24%) activity intensity. When provided choice, girls' activity time and intensity were no longer lower than boys' activity time and intensity. The combination of choice and mastery by providing access to 3 exergames produced greater increases in physical activity time (1 toy 22.5 min, 3 toys 41.4 min) than choice alone via access to 3 traditional games (1 toy 13.6 min, 3 toys 19.5 min). Energy expenditure was 83% greater when engaging in traditional games than exergames.</p> <p>Conclusions</p> <p>Boys and girls differ in their behavioral responses to autonomy supportive environments. By providing girls with greater autonomy they can be motivated to engage in physical activity equal to boys. An environment that provides both autonomy and mastery is most efficacious at increasing physical activity time. Though children play exergames 87% longer than traditional games, the rate of energy expenditure is 83% lower for exergames than traditional indoor versions of the same games.</p

    Green's function probe of a static granular piling

    Full text link
    We present an experiment which aim is to investigate the mechanical properties of a static granular assembly. The piling is an horizontal 3D granular layer confined in a box, we apply a localized extra force at the surface and the spatial distribution of stresses at the bottom is obtained (the mechanical Green's function). For different types of granular media, we observe a linear pressure response which profile shows one peak centered at the vertical of the point of application. The peak's width increases linearly when increasing the depth. This green function seems to be in -at least- qualitative agreement with predictions of elastic theory.Comment: 9 pages, 3 .eps figures, submitted to PR

    Investigating the effects of particle shape on normal compression and overconsolidation using DEM

    Get PDF
    Discrete element modelling of normal compression has been simulated on a sample of breakable two-ball clumps and compared to that of spheres. In both cases the size effect on strength is assumed to be that of real silica sand. The slopes of the normal compression lines are compared and found to be consistent with the proposed equation of the normal compression line. The values of the coefficient of earth pressure at rest K0,nc are also compared and related to the critical state fiction angles for the two materials. The breakable samples have then been unloaded to establish the stress ratios on unloading. At low overconsolidation ratios the values of K0 follow a well-established empirical relationship and realistic Poisson ratios are observed. On progressive unloading both samples head towards passive failure, and the values of the critical state lines in extension in q–p' space are found to be consistent with the critical state angles deduced from the values of K0 during normal compression. The paper highlights the important role of particle shape in governing the stress ratio during both normal compression and subsequent overconsolidation

    Discussion

    No full text

    Modeles photoplastiques des déformations de pente

    No full text

    Suction and Collapse of Lumpy Spoilheaps in Northwestern Bohemia

    No full text
    • 

    corecore