162 research outputs found

    Satellite Observations for Identifying Continental-Scale Climate Change over Australia

    Get PDF
    Australia’s large extent and relatively low population density, as well as its range of climates, means that it is heavily dependent upon satellite observations to identify the extent and magnitude of climate change. This work examines three types of satellite missions that are used to assess different aspects of climate change. The first involves the use of radio occultation measurements based on signals from Global Navigation Satellite Systems (GNSS) spacecraft made by low-Earth orbiting (LEO) satellites to identify changes in the height of the tropopause, a sensitive indicator of climate change owing to its response to temperature changes in the troposphere and lower stratosphere. The second deals with rainfall over Australia, as measured by the Tropical Rainfall Monitoring Mission (TRMM), in conjunction with other satellite- and ground-based observations. Such observations are invaluable, given the scarcity of ground-based observations over vast areas of Australia.While a comparison between the TRMM product and existing ground-based data is very good, there appears to be a decrease in the correlation between datasets, the reason for which is still being investigated. Finally, we examine the state of terrestrial water storage over Australia as determined from variations in the regional gravity field as measured by the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. The loss of substantial volumes of ground water from the Murray-Darling River Basin in the southeast corner of the continent is very apparent, as is an increase over the northern parts of the country. Together, such satellite missions provide a continental-scale picture of climate change over Australia, with temperature and rainfall variations, as well as water resources, able to be monitored, providing valuable information to natural resource managers and climate modellers who endeavour to predict future changes

    GRACE Hydrological Monitoring of Australia: Current Limitations and Future Prospects

    Get PDF
    The Gravity Recovery and Climate Experiment (GRACE) twin-satellite gravimetry mission has been monitoring time-varying changes of the Earth's gravitational field on a near-global scale since 2002. One of the environmentally important signals to be detected is temporal variations induced by changes in the distribution of terrestrial water storage (i.e., hydrology).Since water is one of Australia's precious resources, it is logical to monitor its distribution, and GRACE offers one such opportunity. The second and fourth releases (referred to as RL02and RL04) of the 'standard' monthly GRACE solutions with respect to their annual mean are analysed. When compared to rainfall data over the same time period, GRACE is shown to detect hydrological signals over Australia, with the RL04 data showing better results. However, the relatively small hydrological signal typical for much of Australia is obscured by deficiencies in the standard GRACE data processing and filtering methods. Spectral leakage of oceanic mass changes also still contaminates the small hydrological signals typical over land. It is therefore recommended that Australia-focussed reprocessing of GRACE data is needed for useful hydrological signals to be extracted. Naturally,this will have to be verified by independent 'insitu' external sources such as rainfall, soil moisture and groundwater bore hole piezometer data over Australia

    On the suitability of the 4° × 4° GRACE mascon solutions for remote sensing Australian hydrology

    Get PDF
    Hydrological monitoring is essential for meaningful water-management policies and actions, especially where water resources are scarce and/or dwindling, as is the case in Australia. In this paper, we investigate the regional 4° × 4° mascon (mass concentration) GRACE solutions for Australia provided by GSFC (Goddard Space Flight Center, NASA) for their suitability in monitoring Australian hydrology, with a particular focus on the Murray-Darling Basin (MDB). Using principal component analysis (PCA) and multi-linear regression analysis (MLRA), the main components of spatial and temporal variability in the mascon solutions are analysed over the whole Australian continent and the MDB. The results are compared to those from global solutions provided by CSR (Center for Space Research, University of Texas at Austin, USA) and CNES/GRGS (Centre National d'Études Spatiales/Groupe de Recherche de Geodesie Spatiale, France) and validated using data from the Tropical Rainfall Measuring Mission (TRMM), water storage changes predicted by the WaterGap Global Hydrological Model (WGHM) and the Global Land Data Assimilation System (GLDAS), and ground-truth (river-gauge) observations.For the challenging Australian case with generally weak hydrological signals, the mascon solutions provide similar results to those from the global solutions, with the advantage of not requiring additional filtering (destriping and smoothing) as, for example, is necessary for the CSR solutions. A further advantage of the mascon solutions is that they offer a higher temporal resolution (i.e., 10 days) compared to approximately monthly CSR solutions. Examining equivalent water volume (EWV) time series for the MDB shows a good cross-correlation (generally > 0.7) among the GRACE solutions when considering the whole basin, although lower (generally 0.6), with all time series appearing to visually follow the general behaviour of the river-gauge data, although the cross-correlations are relatively low (between 0.3 and 0.6).Research Highlights â–ș Mascon provides equivalent results as global CSR & CNES/GRGS solutions. â–ș All examined GRACE releases reveal seasonal & tropical north signals. â–ș GRACE, modelled hydrology & precipitation show similar behaviour Australia wide. â–ș GRACE solutions generally follow river gauge data

    Progress Towards the New Australian Geoid-type Model as a Replacement for AUSGeoid98

    Get PDF
    We are nearing the final stages of producing a new geoid-type model for Australia that will replace AUSGeoid98. The terminology geoid-type reflects that the gravimetric quasigeoid model will be fitted to Australia-wide GPS-levelling data, probably using least-squares collocation. This will provide a user-friendly product for the more direct transformation of GPS-derived ellipsoidal heights to normal-orthometric heights on the Australian Height Datum (AHD). This has become necessary because Australian government geodetic authorities have decided to retain the AHD for the 'foreseeable future', whereas it is well known that the AHD contains about 1-2m distortions mainly due to fixing the AHD height to zero at 32 tide gauges. Another driver is that there is an increasing trend towards establishing vertical control using carrier-phase GPS via the single-point precise point positioning (PPP) technique or over very long baselines using the AUSPOS on-line service. When the quasigeoid model was used with differential GPS over short baselines, common/correlated errors cancelled in this relative mode, whereas they do not in the absolute or long-baseline modes. As such, AUSPOS and PPP users of AUSGeoid98 can sometimes find up to 2m discrepancies with existing AHD benchmarks. In addition, we will use improved quasigeoid modelling techniques and the most recent datasets available, such as GRACE (Gravity Recovery and Climate Experiment) global gravity field models, satellite-altimeter-derived gravity anomalies in marine areas that have been re-tracked to improve them in the coastal zone, the latest cleaned release of the Australian land gravity database, the version 2 Australian digital elevation model, which now allows the computation of nine arc-second resolution topographical effects. Some emphasis will be placed on the use of modified kernels as high-pass filters to manage long-wavelength errors in the Australian terrestrial gravity and terrain data, so that they do not contaminate the high-quality GRACE data

    Star Architects, Urban Spectacles and Global Brands: Exploring the Case of the Tokyo Olympics 2020

    Get PDF
    Olympic stadia are often regarded as a political showcase involving a range of influences: the host nation’s international politics, the interests of transnational capitalism along with site-specific meanings and the power of iconic architecture. By examining the 2020 Tokyo Olympic main stadium as a case study, the paper analyzes the controversial Zaha Hadid’ stadium plan in relation to the Japanese nation branding initiative. In doing so, the paper argues that ‘branding’ should be seen as part of an economic and cultural system which seems to enhance the global value of iconic architects and their buildings. Yet, the power of brands can be understood as a contingent entity. This is because its ambivalenct nature entails a tension between exclusiveness and banality; additionally, it could be difficult for branded architects to work across the different regimes of global and local politics; and they are of course also constrained by the logic of neoliberal transnational capitalism. By investigating a major global branded architect, Zaha Hadid and her architecture plan, the paper considers why a new image of Japan could not be adequately created by Hadid’s aesthetics and narratives of the Olympic stadium which should be regarded as a national cultural legacy. The paper then discusses the contested processes of image-making and narrative creation in relation to the representation of Japan in contemporary Olympic culture. The paper concludes with an examination of Kengo Kuma’s architecture language in his 2020 Tokyo Olympics stadium design

    The Olympic Games in Japan and East Asia: Images and Legacies: An Introduction

    Get PDF
    Introduction to The International Journal of Japanese Sociology Special Issue: 'The Olympic Games in Japan and East Asia: Images and Legacies,' edited by Mike Featherstone & Tomoko Tamar

    Boynton-Delray Coastal Water Quality Monitoring Program

    Get PDF
    This report discusses a sequence of six cruises in the vicinity of the Boynton-Delray (South Central) treated-wastewater plant outfall plume (26°27\u2743 N, 80°2\u2732 W), the Boynton Inlet (26°32\u2743 N, 80°2\u2730 W), and the Lake Worth Lagoon, Palm Beach County, Florida. The sampling cruises took place on June 5-6, 2007; August 28-29, 2007; October 18-19, 2007; February 14 and 18, 2008; May 19-20, 2008; and July 11-13, 2008. Water was sampled at 18 locations at the surface, middle, and near the seafloor (where there was sufficient depth) for a total of 45 samples; these samples were analyzed for a variety of nutrients and related parameters. The water sampling unit contained a conductivity-temperature-depth (CTD) instrument from which data were obtained at each sampling site. Synchronal ocean current data were measured by a nearby acoustic Doppler current profiler (ADCP) instrument. The inlet measurements were consistently lower in salinity and more acidic (lower in pH) than the coastal ocean and were warmer during the May and, especially, during the February cruises. For most analytes, viz., nitrite+nitrate (N+N), total suspended solids (TSS), chlorophyll-a, silica (Si), and total dissolved nitrogen (TDN), the lagoon concentrations were significantly higher than the coastal ocean; the inlet concentrations appeared to be consistent with lagoon water with partial mixing with the coastal ocean, as expected. Estimates of the nutrient flux to the coastal ocean were computed: approximately 1,500 kg of dissolved nitrogen (N), 2,350 kg of silicate (Si), 33 kg of orthophosphate (P), and 59 kg of ammonium (NH4) per day were delivered to the coastal ocean through the inlet. The outfall boil at South Central outfall (the smallest in volume of the six outfalls in southeast Florida) is only visible under ideal conditions. In the six cruises described in this document, the outfall boil could be found in only one cruise (August 28-29, 2007). Elevated concentrations of nutrients (N+N, P, Si, and P) at the outfall vicinity were measured, and these concentrations decreased rapidly away from the outfall for most analytes, to become undistinguished from the background within 3 km or less. Not finding the boil, however, in five of six cruises meant that the waters with the highest concentrations were probably missed. When the boil was sampled in August 2007, N+N, P, and total dissolved phosphorus (TDP) concentrations at the boil were roughly the same as from the inlet. For other analytes (chlorophyll-a, TSS, Si, and dissolved organic carbon [DOC]), the concentrations at or near the outfall were significantly less than those from the lagoon and inlet on most of the cruises. The coastal ocean appeared to be significantly impacted by the Boynton Inlet and less so from the inlet. A suggestion of a source to the south was seen in some analytes. Measurements from the Gulf Stream Reef area were the lowest in the study, and may provide “background” concentrations for this region. As expected, the coastal ocean was warmer and more stratified in the summer compared to the winter, e.g., whereas no thermocline was noted in the CTD data from February 2007, a strong thermocline was observed in most casts during July 2008. In certain cases (e.g., N+N in June 2007, pH in July 2008), an increase in the concentration (decrease for pH) from north to south implied a source from the south, e.g., the Boca Raton Inlet or Boca Raton outfall
    • 

    corecore