9 research outputs found

    Regulation of human dUTPase gene expression and p53-mediated transcriptional repression in response to oxaliplatin-induced DNA damage

    Get PDF
    Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA is lethal. Importantly, uracil misincorporation is a mechanism of cytotoxicity induced by fluoropyrimidine chemotherapeutic agents including 5-fluorouracil (5-FU) and elevated expression of dUTPase is negatively correlated with clinical response to 5-FU-therapy. In this study we performed the first functional characterization of the dUTPase promoter and demonstrate a role for E2F-1 and Sp1 in driving dUTPase expression. We establish a direct role for both mutant and wild-type forms of p53 in modulating dUTPase promoter activity. Treatment of HCT116 p53+/+ cells with the DNA-damaging agent oxaliplatin induced a p53-dependent transcriptional downregulation of dUTPase not observed in the isogenic null cell line. Oxaliplatin treatment induced enrichment of p53 at the dUTPase promoter with a concomitant reduction in Sp1. The suppression of dUTPase by oxaliplatin promoted increased levels of dUTP that was enhanced by subsequent addition of fluoropyrimidines. The novel observation that oxaliplatin downregulates dUTPase expression may provide a mechanistic basis contributing to the synergy observed between 5-FU and oxaliplatin in the clinic. Furthermore, these studies provide the first evidence of a direct transcriptional link between the essential enzyme dUTPase and the tumor suppressor p53

    DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.</p> <p>Methods</p> <p>HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity<sup>® </sup>Pathway Analysis.</p> <p>Results</p> <p>Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.</p> <p>Conclusion</p> <p>This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.</p

    Identification of sequence determinants of human nuclear dUTPase isoform localization

    No full text
    dUTP nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate and is the central regulator of cellular dUTP pools. Nuclear (DUT-N) and mitochondrial (DUT-M) isoforms of the protein have been identified in humans and arise from the same gene by the alternative use of 5' exons. Recently, it has been shown that these isoforms are aberrantly expressed in some cancers and overexpression of dUTPase in the nucleus is associated with resistance to chemotherapeutic agents that target thymidylate biosynthesis. In this study, we have examined the signals necessary for dUTPase isoform localization using green fluorescent protein fusion constructs. We report that the N-terminal 23 amino acids of DUT-N are required but not sufficient for complete nuclear localization. Within this region, we identified a small cluster of basic residues (K(14)R(15)R(17)) that resemble a classic monopartite nuclear localization signal (NLS). Mutation of these residues completely abolishes nuclear localization. In addition, phosphorylation of Ser11 near the putative NLS has no affect on DUT-N nuclear localization. Through deletion analysis we show improved sorting of DUT-N to the nucleus when most of the protein sequence is present. Therefore, we conclude that DUT-N may contain a complex NLS that is located throughout the entire protein.</p

    Novel opportunities for thymidylate metabolism as a therapeutic target

    No full text
    For over 40 years, the fluoropyrimidine 5-fluorouracil (5-FU) has remained the central agent in therapeutic regimens employed in the treatment of colorectal cancer (CRC) and is frequently combined with the DNA-damaging agent's oxaliplatin and irinotecan increasing response rates and improving overall survival. However, many patients will derive little or no benefit from treatment, highlighting the need to identify novel therapeutic targets to improve the efficacy of current 5-FU-based chemotherapeutic strategies. Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi providing substrate for thymidylate synthase (TS) and DNA synthesis and repair. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA as uracil is lethal. Importantly, uracil misincorporation represents an important mechanism of cytotoxicity induced by the TS-targeted class of chemotherapeutic agents including 5-FU. A growing body of evidence suggests that dUTPase is an important mediator of response to TS-targeted agents. In this manuscript we present further evidence demonstrating that elevated expression of dUTPase can protect breast cancer cells from the expansion of the intracellular uracil pool, translating to reduced growth inhibition following treatment with 5-FU. We therefore report the implementation of in silico drug development techniques to identify and develop small molecule inhibitors of dUTPase. As 5-FU and the oral 5-FU pro-drug capecitabine remain central agents in the treatment of a variety of malignancies, the clinical utility of a small molecule inhibitor to dUTPase represents a viable strategy to improve the clinical efficacy of these mainstay chemotherapeutic agents
    corecore