9 research outputs found

    The effect of a reversed circular jet impingement on a bifacial module PVT collector energy performance

    Get PDF
    Photovoltaic thermal (PVT) technologies have a significant downside in addition to their numerous advantages. PVT technologies are constrained by the fact that its photovoltaic module gains heat due to exposure to solar irradiance, which reduces the photovoltaic efficiency. Jet impingement is one of the most effective methods to cool a photovoltaic module. An indoor experiment using a solar simulator was conducted on a bifacial PVT solar collector cooled by a reversed circular flow jet impingement (RCFJI) to evaluate the energy performance of the PVT collector. The study was conducted under a constant solar irradiance of 900W/m2 and flowrate (mass) ranging from 0.01 to 0.14 kg/s. Three bifacial modules with 0.22, 0.33, and 0.66 packing factors were mounted 25 mm above the RCFJI for cooling. The 0.66 packing factor module recorded the highest photovoltaic efficiency of 10.91 % at 0.14 kg/s flowrate (mass). Meanwhile, the 0.22 and 0.33 packing factors recorded a photovoltaic efficiency of 4.50 % and 6.45 %, respectively. The highest thermal efficiency recorded under the same operating condition was 61.43 %, using a 0.66 packing factor. Overall, the highest combined photovoltaic thermal (PVT) efficiency for 0.22, 0.33, and 0.66 was 56.62 %, 61.88 %, and 72.35 %, respectively

    Performance enhancement of photovoltaic modules with passive cooling multidirectional tapered fin heat sinks (MTFHS)

    Get PDF
    The electrical output of photovoltaic (PV) modules degrades with continued exposure to extreme temperatures caused by solar radiation. The uniqueness of this research lies in the utilization of multidirectional fins with varying heights, which effectively accelerate heat transfer in PV cooling systems by inducing a transition in the boundary layer within the confined zone of the fins. The research aims to investigate the effect of using Multidirectional Tapered Fin Heat Sinks (MTFHS) to improve the efficiency of PV modules by utilizing aluminum alloy material as heatsinks. The proposed multidirectional design aims to facilitate enhanced heat transfer by promoting airflow in the central area of the PV module. The experimental procedures in our study differ from previous research as we utilized the latest generation of PV modules (405 Wp, PERC Half-cut cells) to fill the discrepancy between laboratory-based investigations and practical applications. Two PV modules were tested for an outdoor parametric analysis under outdoor operating conditions, with solar irradiance recorded from 200 to 1000 W/m2 and ambient temperatures ranging from 26° to 38 °C. Findings indicated that the proposed MTFHS could lower PV module temperatures by 12 ⁰C. Reduced temperature boosts PV module efficiency by 1.53%. Cooling advancements proved vital in contributing to sustainability in PV system installations

    Urban eco-greenergy (TM) hybrid wind-solar photovoltaic energy system and its applications

    Get PDF
    This paper introduces the Eco-Greenergy (TM) hybrid wind-solar photovoltaic energy generation system and its applications. The system is an integration of the novel omni-direction-guide-vane (ODGV) with a vertical axis wind turbine (VAWT). The ODGV is designed to surround the VAWT for wind power augmentation by creating a venturi effect to increase the on-coming wind speed before it interacts with the turbine blades. In wind tunnel tests, the ODGV improves the power output of the VAWT by 3.48 times compared with a bare VAWT at its peak torque. Furthermore, the rotor rotational speed of the wind turbine increased by 182 at 6 m/s of wind speed. A solar PV panel can be mounted on the top surface of the ODGV for solar energy generation. Estimation on wind-solar energy output shows that the system can generate a total of 572.8 kWh of energy per year By comparison, the ODGV increases the annual wind energy output by 438. The green energy generated from the hybrid system can be used to power LED lights or other appliances (e.g., CCTV camera)
    corecore