73 research outputs found

    Advancing Risk Assessment: Mechanistic Dose-response Modelling of Listeria monocytogenes Infection in Human Populations

    Get PDF
    Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The utility of characterizing the effects of strain variation and individual/subgroup susceptibility on dose-response outcomes has motivated the search for new approaches beyond the popular use of the exponential dose-response model for listeriosis. While descriptive models can account for such variation, they have limited power to extrapolate beyond the details of particular outbreaks. By contrast, this study exhibits dose-response relationships from a mechanistic basis, quantifying key biological factors involved in pathogen-host dynamics. An efficient computational algorithm and geometric interpretation of the infection pathway are developed to connect dose-response relationships with the underlying bistable dynamics of the model. Relying on in vitro experiments as well as outbreak data, we estimate plausible parameters for the human context. Despite the presence of uncertainty in such parameters, sensitivity analysis reveals that the host response is most influenced by the pathogen-immune system interaction. In particular, we show how variation in this interaction across a subgroup of the population dictates the shape of dose-response curves. Finally, in terms of future experimentation, our model results provide guidelines and highlight vital aspects of the interplay between immune cells and particular strains of Listeria monocytogenes that should be examined

    With-in host Dynamics of L. monocytogenes and Thresholds for Distinct Infection Scenarios

    Get PDF
    The case fatality and illness rates associated with L. monocytogenes continue to pose a serious public health burden despite the significant efforts and control protocol administered by private and public sectors. Due to the advance in surveillance and improvement in detection methodology, the knowledge of sources, transmission routes, growth potential in food process units and storage, effect of pH and temperature are well understood. However, the with-in host growth and transmission mechanisms of L. monocytogenes, particularly within the human host, remain unclear, largely due to the limited access to scientific experimentation on the human population. In order to provide insight towards the human immune response to the infection caused by L. monocytogenes, we develop a with-in host mathematical model. The model explains, in terms of biological parameters, the states of asymptomatic infection, mild infection and systemic infection leading to listeriosis. The activation and proliferation of T-cells are found to be critical for the susceptibility of the infection. Utilizing stability analysis and numerical simulation, the ranges of the critical parameters relative to infection states are established. Bifurcation analysis shows the impact of the differences of these parameters on the dynamics of the model. Finally, we present model applications in regards to predicting the risk potential of listeriosis relative to the susceptible human population

    Unraveling the Dose-response Puzzle of L. monocytogenes: A Mechanistic Approach

    Get PDF
    Food-borne disease outbreaks caused by Listeria monocytogenes continue to impose heavy burdens on public health in North America and globally. To explore the threat L. monocytogenes presents to the elderly, pregnant woman and immuno-compromised individuals, many studies have focused on in-host infection mechanisms and risk evaluation in terms of dose-response outcomes. However, the connection of these two foci has received little attention, leaving risk prediction with an insufficient mechanistic basis. Consequently, there is a critical need to quantifiably link in-host infection pathways with the dose-response paradigm. To better understand these relationships, we propose a new mathematical model to describe the gastro-intestinal pathway of L. monocytogenes within the host. The model dynamics are shown to be sensitive to inoculation doses and exhibit bi-stability phenomena. Applying the model to guinea pigs, we show how it provides useful tools to identify key parameters and to inform critical values of these parameters that are pivotal in risk evaluation. Our preliminary analysis shows that the effect of gastro-environmental stress, the role of commensal microbiota and immune cells are critical for successful infection of L. monocytogenes and for dictating the shape of the dose-response curves

    pH Dependent C-jejuni Thermal Inactivation Models And Application To Poultry Scalding

    Get PDF
    Campylobacter jejuni related outbreaks and prevalence on retail poultry products pose threats to public health and cause financial burden worldwide. To resolve these problems, it is imperative to take a closer look at poultry processing practices and standards. Using available data (D-values) on the thermal inactivation of C. jejuni we develop a comprehensive inactivation model, taking into account the variation of strain-specific heat resistance, experimental method, and suspension pH. Utilizing our C. jejuni thermal inactivation model, we study the poultry scalding process. We present a mechanistic model of bacteria transfer and inactivation during a typical immersion scald in a high-speed industrial plant. Integration of our C. jejuni inactivation model into the scalding model culminates in validation against industrial processing data. In particular, we successfully predict bacteria concentrations in the scald water and link key factors such as scald water pH and temperature to cross-contamination and overall microbiological quality of carcasses. Furthermore, we demonstrate the applicability of our inactivation model for scalding operations at seven Canadian poultry plants. In addition to providing recommendations for best-practice and a review of scalding research, our work is intended to act as a modular foundation for further research in the interest of public health and financial well-being. (C) 2017 Elsevier Ltd. All rights reserved

    Individual Based Modeling And Analysis Of Pathogen Levels In Poultry Chilling Process

    Get PDF
    Pathogen control during poultry processing critically depends on more enhanced insight into contamination dynamics. In this study we build an individual based model (IBM) of the chilling process. Quantifying the relationships between typical Canadian processing specifications, water chemistry dynamics and pathogen levels both in the chiller water and on individual carcasses, the IBM is shown to provide a useful tool for risk management as it can inform risk assessment models. We apply the IBM to Campylobacter spp. contamination on broiler carcasses, illustrating how free chlorine (FC) sanitization, organic load in the water, and pre-chill carcass pathogen levels affect pathogen levels of post-chill broilers. In particular, given a uniform distribution of Campylobacter levels on incoming poultry we quantify the efficacy of FC control in not only reducing pathogen levels on average, but also the variation of pathogen levels on poultry exiting the chill tank. Furthermore, we demonstrate that the absence/presence of FC input dramatically influences when, during a continuous chilling operation, cross-contamination will be more likely

    Individual Based Modeling And Analysis Of Pathogen Levels In Poultry Chilling Process

    Get PDF
    Pathogen control during poultry processing critically depends on more enhanced insight into contamination dynamics. In this study we build an individual based model (IBM) of the chilling process. Quantifying the relationships between typical Canadian processing specifications, water chemistry dynamics and pathogen levels both in the chiller water and on individual carcasses, the IBM is shown to provide a useful tool for risk management as it can inform risk assessment models. We apply the IBM to Campylobacter spp. contamination on broiler carcasses, illustrating how free chlorine (FC) sanitization, organic load in the water, and pre-chill carcass pathogen levels affect pathogen levels of post-chill broilers. In particular, given a uniform distribution of Campylobacter levels on incoming poultry we quantify the efficacy of FC control in not only reducing pathogen levels on average, but also the variation of pathogen levels on poultry exiting the chill tank. Furthermore, we demonstrate that the absence/presence of FC input dramatically influences when, during a continuous chilling operation, cross-contamination will be more likely

    An Agent-based Simulator for the Gastrointestinal Pathway of Listeria monocytogenes

    Get PDF
    We developed an agent-based gastric simulator for a human host to illustrate the within host survival mechanisms of Listeria monocytogenes. The simulator incorporates the gastric physiology and digestion processes that are critical for pathogen survival in the stomach. Mathematical formulations for the pH dynamics, stomach emptying time, and survival probability in the presence of gastric acid are integrated in the simulator to evaluate the portion of ingested bacteria that survives in the stomach and reaches the small intestine. The parameters are estimated using in vitro data relevant to the human stomach and L. monocytogenes. The simulator predicts that 5%–29% of ingested bacteria can survive a human stomach and reach the small intestine. In the absence of extensive scientific experiments, which are not feasible on the grounds of ethical and safety concerns, this simulator may provide a supplementary tool to evaluate pathogen survival and subsequent infection, especially with regards to the ingestion of small doses

    Modeling Cross-Contamination During Poultry Processing: Dynamics in The Chiller Tank

    Get PDF
    Understanding mechanisms of cross-contamination during poultry processing is vital for effective pathogen control. As an initial step toward this goal, we develop a mathematical model of the chilling process in a typical high speed Canadian processing plant. An important attribute of our model is that it provides quantifiable links between processing control parameters and microbial levels, simplifying the complexity of these relationships for implementation into risk assessment models. We apply our model to generic, non-pathogenic Escherichia coli contamination on broiler carcasses, connecting microbial control with chlorine sanitization, organic load in the water, and pre-chiller E. coli levels on broiler carcasses. In particular, our results suggest that while chlorine control is important for reducing E. coli levels during chilling, it plays a less significant role in the management of cross-contamination issues
    corecore