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The utility of characterizing the effects of strain variation 
and individual/subgroup susceptibility on dose-response 
outcomes has motivated the search for new approaches beyond 
the popular use of the exponential dose-response model for 
listeriosis. While descriptive models can account for such 
variation, they have limited power to extrapolate beyond 
the details of particular outbreaks. By contrast, this study 
exhibits dose-response relationships from a mechanistic basis, 
quantifying key biological factors involved in pathogen-host 
dynamics. An efficient computational algorithm and geometric 
interpretation of the infection pathway are developed to 
connect dose-response relationships with the underlying 
bistable dynamics of the model. Relying on in vitro experiments 
as well as outbreak data, we estimate plausible parameters for 
the human context. Despite the presence of uncertainty in such 
parameters, sensitivity analysis reveals that the host response is 
most influenced by the pathogen-immune system interaction. 
In particular, we show how variation in this interaction across a 
subgroup of the population dictates the shape of dose-response 
curves. Finally, in terms of future experimentation, our model 
results provide guidelines and highlight vital aspects of the 
interplay between immune cells and particular strains of 
Listeria monocytogenes that should be examined.
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1. Introduction
As a foodborne disease, human listeriosis caused by Listeria monocytogenes is relatively rare. While 
outbreaks due to L. monocytogenes are much less common as compared with those linked to Escherichia 
coli and Salmonella, their occurrence is associated with a high case fatality rate (20-30%) [1,2]. Pregnant 
women, immunocompromised individuals and the elderly are particularly susceptible to this potentially 
deadly disease [3,4]. Considering medical costs, productivity loss and valuation of premature mortality, 
Hoffmann et al. estimated that the annual cost of illness in the USA due to L. monocytogenes is $2.6 
billion [5].

Given the severity of the consequences within specific subgroups of the population and the continued 
socio-economic burden, much research has been devoted to elucidating the infection processes of 
L. monocytogenes [4]. For instance, drawing from ‘humanized’ transgenic murine models as well as 
guinea pigs and rabbits, scientific studies have explored the intracellular transmission mechanisms of 
this pathogen as well as its ability to cross the intestinal wall [3,4,6]. More than 50 surface proteins 
have been shown to be involved with host cell invasion and cell-to-cell movement [3]. In terms of cell- 
to-cell contact, L. monocytogenes expresses surface proteins internalin, intA and intB, that interact with 
the host’s receptors E-cadherin and Met [7,8]. Pore-forming gene listeriolysisn O (LLO) aids bacterial 
escape from the vacuole of a cell and surface protein ActA promotes intra- and inter-cellular movement. 
Other proteins such as Clathrin, Lecitinase, Septin and Tuba facilitate the invasion process and help 
L. monocytogenes to avoid immune surveillance [4]. After crossing the intestinal wall, the pathogen 
most likely disseminates from the mesenteric lymph nodes and blood vessels to the spleen and liver, 
potentially reaching the brain and placenta [3,4,6,9].

In line with animal-based studies focused on the pathophysiology of listeriosis, the infection potential 
of L. monocytogenes has been shown to be dose-dependent [6,9,10]. An inoculation with 1 x 1011 CFU 
of the pathogen indicates a 100% fatality rate in mice, whereas a dose of 1 x 1010 CFU results in 
100% survival [6]. Van Stelten et al. show that both the number of guinea pigs and the proportion of 
organs infected increase with higher inoculation doses [11]. For doses 1 x 106,1x 107 and 1 x 1010 
CFU of L. monocytogenes, the respective infection rates were 0%, 50% and 100%. Similar experiments 
with monkeys [10], mice [12-14] and zebrafish [15] demonstrate that casualty, systemic infection and 
pregnancy disorders are strongly linked with the magnitude of inoculation doses.

Logically building from the understanding that listeriosis is dose-dependent, the quantification of 
dose-response relationships has typically been developed via statistical models supported by animal 
studies and human outbreak data (e.g. [2,6,16-19] and references therein). While this research is valuable 
for correlating dose and response in particular circumstances (for instance, after an outbreak has 
occurred), without a mechanistic understanding of how biological factors, relative to dose, dictate 
individual host infections, such correlative descriptions have limited predictive capacity [20,21]. To 
bridge the gap between exposure and infection, a mechanistic description is crucial [3,16].

A recent approach in this regard concerns the Key Events Dose-Response Framework (KEDRF) [20]. 
The KEDRF attempts to characterize the respective cascade of steps and transfer probabilities involved, 
for instance, within the infection pathway of an invasive pathogen such as L. monocytogenes. Current 
dose-response models for such pathogens typically depend on two key assumptions: (i) single hit (i.e. 
a single ingested pathogen has the potential to cause infection) and (ii) independent action (i.e. the 
probability of infection caused by any particular pathogen is independent of the number ingested) [20]. 
While these assumptions are widely accepted, they have a significant impact on the shape of the dose­
response curve at low doses. For instance, a study by Holcomb et al. compared six dose-response models, 
illustrating vast differences in their respective responses when extrapolating from high to low doses [22]. 
Because of these limitations and the difficulty of obtaining useful data at low doses, Buchanan et al. 
suggest that ‘the best strategy for refining dose-response assessment for foodborne pathogens is to 
advance the understanding of the underlying biology, and by doing so, refine the assumptions that 
underline predictive models’ [20]. This is where mechanistic modelling can play a vital role. That is, by 
quantifying the fundamental biology involved in the key steps of the infection pathway, and using these 
to generate dose-response relationships, predictions of infection risk can be greatly improved [20,21].

Currently, there are a limited number of studies that incorporate mechanistic modelling to study 
the dose-response relationship. Pujol et al. developed a dynamic model to demonstrate how immune 
system effects produce dose-responses relative to the timing of pathogen dose [23]. In particular, they 
showed that models which focus only on single exposure could overestimate the infection risk. While 
their model highlights general aspects of immune response, they do not include the effect of gastric 
pressure in mitigating the probability of infection. In the context of the classical SIR model, Brouwer
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et al. demonstrated that the impact on pathogen transmission with regard to the choice of dose-response 
functional form can vary markedly [24]. Furthermore, other studies such as [25,26] have explored 
mechanistic approaches to draw conclusions from low dose exposure in the context of radiation/cancer 
onset and as well as norovirus infection.

In terms of L. monocytogenes, there is a paucity of research in which the quantification of infection 
risk is based on detailed mathematical descriptions of host-pathogen interactions [27]. As a primary 
step in addressing this critical need, we built a mechanistic model that describes the gastrointestinal 
pathway of L. monocytogenes survival within a host [28]. Applying the model to guinea pigs, we 
quantifiably characterized the dose-response relationship in terms of parameters that represent the 
innate immune response and stress of the gastrointestinal environment. This work [28] represents 
important progress towards developing a new paradigm, as Haas terms it ‘models beyond Generation 
3’, in which microbial dose-response modelling incorporates mechanistic details of in vivo physiological 
processes [16].

In the interest of public health, however, such a model should reflect the kinetics and progression of a 
bacterial infection in humans. One of the limitations of the model in [28] is that its parameter values and 
functional forms are determined using guinea pig data. The goal of the present paper is twofold: (i) to 
address this issue by using in vitro studies that simulate human physiology, modified mathematical forms 
and human listeriosis outbreak data to develop a more relevant mechanistic model and (ii) in the context 
of the Finland butter outbreak [18], to compare the dose-response generated from the exponential form 
(used by FAO/WHO) with the dose-response relationship arising from our new model. To that end, this 
paper is organized as follows.

Section 2 describes the gastrointestinal pathway of L. monocytogenes in human hosts and the potential 
host barriers against harmful pathogens. A mechanistic dose-response model is developed in §3. This 
section includes complete model analysis as well as the estimation of key parameter ranges as applied 
to human infection. Section 3 also describes the biological implications and computational aspects of 
the model. In order to address uncertainties in the model parameters, and to further clarify conditions 
under which specific parameters play a dominant role in determining infection outcomes, we perform 
a sensitivity analysis in §4. In §5, we use human outbreak data to help elucidate the ranges of those 
parameters that govern immune response. Lastly, in §6, we discuss the utility of the model as a new 
microbial risk assessment tool, highlighting the need for experimentation to simulate/quantify specific 
immune response features in the human small intestine as well as the effect of different food matrices on 
the survivability of L. monocytogenes in the stomach.

2. Gastrointestinal barriers for Listeria monocytogenes
Listeria monocytogenes is a foodborne pathogen. To survive in a human host, we consider the 
following challenges the pathogen must overcome along the pathway from ingestion to gastrointestinal 
colonization and potential infection.

2.1. Gastric juice and low pH
After ingestion, L. monocytogenes travels along with food particles through the oesophagus and reaches 
the stomach within a few seconds (in this study, we disregard the effect of saliva in the mouth on 
the bacterial population). Once in the stomach, enzymes and acid are secreted to sanitize and break 
food into digestible molecules. Among these secretions, stomach acid (HCl) is significant for a number 
of reasons. It initiates protein digestion by activating pepsinogen that secretes from the gastric gland. 
It also enhances the absorption of minerals, calcium and iron [29]. In addition, stomach acid plays a 
crucial role in clearing food pathogens from the stomach before they move down to the small intestine. 
Numerous in vitro and in vivo experimental results indicate that low pH levels are detrimental for 
bacterial survival [30-32].

For instance, scientific experiments with rats [33], mice [34] and guinea pigs [6] showed that a 
significant portion of inoculated L. monocytogenes are killed following the first hours of ingestion. These 
data indicate that stomach fluid is a major deterrent for the survival and growth of L. monocytogenes. 
In fact, stomach fluid reduces the number of L. monocytogenes by more than 99% [9,30]. If the bacteria 
can manage to survive the stomach fluid and reach the small intestine, where the pH level is relatively 
neutral (6.4-7.4) [35], they may be able to replicate and grow.
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2.2. Commensal bacteria in the small intestine
Upon surviving the gastric environment, L. monocytogenes passes to the small intestine. While the small 
intestine is a more favourable environment for bacterial persistence as compared to the stomach, the 
bacteria still need to overcome several obstacles to colonize. The small intestine is a niche for more than 
500 species of commensal microbiota [36,37]. The commensal bacteria are beneficial for the host, but 
fight against incoming pathogens through different mechanisms. A recent study shows that commensal 
microbes provides the first line of defence against L. monocytogenes in the small intestine [38]. By 
consuming unused nutrients, commensal microbiota compete with other pathogens for resources and 
inhibit their growth. In addition, by releasing microbial metabolites, acetate and antimicrobial effector 
molecules called bacteriocins, resident microbiota can effectively inhibit colonization of pathogenic 
bacteria [37,39]. Microbiota also induce innate and adaptive immunity by releasing microbial patterns, 
lipopolysaccharides and peptidoglycan, which can be sensed by host epithelial cells. Upon sensing 
pathogens, goblet cells release gel-forming mucins and epithelial cells release defensins [37]. These 
proteins help kill bacteria and defend the host from any chemical and physical injuries due to 
pathogenesis [37,40].

2.3. Immune cells
The innate immune system is the first line of defence against pathogen colonization and is primarily 
responsible for clearing pathogens from the host. Multiple components of the immune system may 
be activated simultaneously to eliminate pathogens. Dendritic cells (DCs) and macrophages are 
two important components of the innate immune system and are effective, in particular, against 
L. monocytogenes. DCs sample luminal contents by stretching their long dendrites through tight 
junctions of epithelial cells. Macrophages destroy pathogens by uptaking and degrading them, releasing 
inflammatory mediators and inducing adaptive immune response [37,41,42]. These immune cells have 
the ability to recognize microbial patterns through pattern recognition receptors and toll-like receptors 
[43]. In addition, the role of bactericidal lectin RegIIIγ secreted by intestinal paneth cells is found 
to be remarkable. MyD88-mediated signalling pathway induces a high level of RegIIIγ that clears 
the L. monocytogenes from the small intestine rapidly [30,44]. The innate immune system in essence 
regulates the whole immune response against the invading pathogens and attempts to prevent them 
from spreading beyond the intestine and causing systemic infection.

When an infection persists, the adaptive immune system becomes activated. CD8+ T cells proliferate 
rapidly and clear the infection [45]. Plasma cells mediated by DCs release IgA in the lamina propria [36, 
37]. IgA can reach the small intestine and attach to bacteria to inactivate them [37]. Both T cells and B cells 
retain memories which can promptly clear a possible secondary infection [36,45].

In addition to microbial resistance and immune pressure, the liver secrets a significant amount of 
bile into the intestinal tract which exerts stress on pathogens [46,47]. Bile can affect phospholipids and 
proteins of cell membrane and structure, and cause dissociation of the cell membrane [48]. It also induces 
DNA damage in bacterial cells [47]. However, the bile resistance of L. monocytogenes in the small intestine 
has also been reported [49,50].

3. Mechanistic dose-response model
3.1. Population dynamics of Listeria monocytogenes in the human gut pathway
In this section, we describe the mechanistic dose-response model which is an extension of a previous 
model [28] developed in the context of animal data. Food particles are the natural vehicles of 
L. monocytogenes for the in-host exposure. In this study, we will consider the initial pathway for 
L. monocytogenes from mouth to small intestine in the human context. Considering the environment 
along the gut pathway as described in the previous section, we view the population dynamics of 
L. monocytogenes in the stomach and small intestine separately. In particular, we assume that (1) bacteria 
do not grow in the stomach due to the presence of high acidity, but are killed, decaying exponentially. 
(2) Since food passes continuously from the stomach right after consumption [51,52], we assume that 
while stomach acid kills the bacteria, bacteria are also being discharged with food particles continuously 
to the small intestine from the stomach at a rate of σ per hour. (3) The growth of the bacteria is limited 
by commensals, immune pressure and the intestinal environment. That is, bacteria cannot grow beyond 
the carrying capacity of the small intestine. (4) In the small intestine, L. monocytogenes can reproduce at a
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Table 1. Description of the variables and parameters of model (3.1).

variables and parameters description

...................................................................
population of L. monocytogenes in the stomach

population of L. monocytogenes in the small intestine
...................................................................

δ killing rate of L. monocytogenes in the stomach

r growth rate of L. monocytogenes in the small intestine
..K...............................................................

carrying capacity of L. monocytogenes in the small intestine

σ dispersal rate of L. monocytogenes from stomach to the small intestine
...................................................................

killing rate of L. monocytogenes in the small intestine

a defence potential of L. monocytogenes against the host in the small intestine

rate of r per hour and may be killed by the immune cells and intestinal fluid (e.g. bile) at a rate of β per 
hour; see [28] for details.

Following assumptions (1)-(4) above, the dynamics of L. monocytogenes in the gut is described by the 
following ordinary differential equation model:

where Lg (CFU) denotes the population of L. monocytogenes in the stomach at time t (in hours) and 
δ > 0 (h— 1) represents the kill rate of the bacteria due to high acidity in the gastric environment. Li 

(CFU) represents the population of L. monocytogenes in the small intestine and we assume the population 
dynamics there follow a logistic growth function with an intrinsic growth rate r and carrying capacity K. 
Owing to host defence, L. monocytogenes is killed at the rate of β with a saturated killing mechanism 
involving the parameter α [53,54]. Briefly, α quantifies the potential of the pathogen to escape the 
host’s defence. If the number of bacteria (Li) or value of α is large, then the bacteria can outcompete 
the host response. The details regarding the mechanism of saturated killing and rationality behind the 
mathematical form used are discussed in [28]. A summary of the parameters and variables of model (3.1) 
is given in table 1.

3.2. Model (3.1) analysis and implications
3.2.1. Classification of mathematical dynamics
Model (3.1) is two-dimensional and has relatively simple dynamics. It is well posed in the sense that 
solutions of the model are uniquely defined and positive for any positive initial values. The model has 
three possible steady states: Lq(0, L0), L*(0, L*) and L+(0,L+), where

Notice that the first component of each of the steady states is zero and thus we label each steady state by 
its second component.

To describe the dynamics of model (3.1) completely, we adopt a geometric approach, illustrating 
solution behaviour relative to three mutual exclusive cases that are characterized by the existence of 
steady states.

Using the fact that the nullclines of Lg and Li are given by

and the fact that the derivative of Lg is always negative, we have the following cases:
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Figure 1. Illustration of steady states and vector field governing the solutions of model (3.1). The Li-nullcline is represented by f (Li) and 
the Li-axis represents the Lg-nullcline. The vector field demonstrates the possible course of direction of the model solutions as they start 
from an initial value (dose) on the Lg-axis. The filled circles represent stable steady states while open circles represent unstable steady 
state. Three distinct scenarios arise from threshold conditions. (a) r < 4aKβ/(1 + aK)2: solutions always approach the 0 steady state 
(L0), indicating bacterial extinction independent of initial conditions; (b) β < r: solutions always approach the positive steady state 
(L+), showing bacterial persistence independent of initial values; (c)4aKβ/(1 + aK)2 < r < β: solutions can approach either L0or 
L + depending on the initial value (dose), creating a scenario that can generate dose-responses.

Case I (only L0 exists): In this case, L0 is globally stable and the dynamics are relatively simple. The 
trajectories beginning from the Lg-axis will move to the southeast direction until they hit the Li-nullcline 
(f ), then will follow the southwest direction until reaching L0 as can be seen in figure 1a. This case exists 
when r < 4αΚβ/(1 + aK2) (< β).

Case II (L0 and L+ exist): In this case, L+ is globally stable and the dynamics of the model are also 
simple. The trajectories from the Lg-axis will always approach L+ following the southeast direction 
(figure 1 b). This situation occurs when β < r, and like case I, the model behaviour does not depend on 
the initial conditions.

Case III (all three steady states exist): In this case Lo and L + are locally stable and L + is unstable, there 
is a boundary (separatrix) between the basins of Lo and L + originates from L + (figure 1 c). This case exists 
when 4a/Κβ/(1 + aK)2 < r <β. We should note that a must be positive for the existence of case III.

3.2.2. Biological implications and dose-response
The governing perspective connecting model (3.1) with infection outcomes in humans is this: selecting 
a person from a given population and a strain of L. monocytogenes translates to assigning specific values 
to each parameter in the model, selecting an ingested dose and running the model. The respective 
parameter values corresponding to the specific host and pathogen strain characteristics in question fall 
into one of the three cases indicated above. Notice that β K/(1 + aK) quantifies the maximum killing rate 
of the pathogen via immune cells, and 4a/(1 + aK) < 1 (for positive a) can be thought of as a fractional 
scaling related to the virulence of the pathogen in question. In the light of this, case I represents a strong 
host defence coupled with a strain having minimal growth potential in the small intestine. In terms of 
bacterial dynamics, case I implies that no matter the initial dose, the bacteria will not be able to colonize 
the gut, but will be driven to extinction. Like case I, case II does not depend on initial conditions, but 
given an arbitrary initial dose, the bacteria will always be able to colonize the gut, leading to infection. 
Thus, case II represents a strain with a rapid growth potential in conjunction with poor host defence.

In terms of the aforementioned parameter conditions, case III represents a wide range of host immune 
strengths and pathogen strain characteristics. In addition, case III differs dramatically from the other 
two as the solution behaviour depends on initial conditions. If the dose is large enough, then model 
(3.1) predicts that the bacteria will colonize the gut, whereas, for smaller doses, colonization is not 
possible. Mathematically speaking, this dose threshold depends on where the separatrix intersects the Lg 
axis (figure 2).

In order to determine the dose-response relationship predicted via model (3.1), we run it with its 
given parameter and initial (dose) values, observing whether the solution approaches L+ or not. To find 
the probability of positive response, we run the model n times with the distribution of model parameters 
under a fixed dose and count the number of positive responses (c)outofn runs. The probability of 
infection is calculated as c/n for that dose. Notice that while the implication that colonization implies host 
infection may not always be true, for the rest of the paper, we will assume that it holds. Henceforth, we 
will refer to colonization and infection interchangeably unless otherwise indicated. For a more detailed 
treatment of this notion and related ramifications, see §6.
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Figure 2. Threshold approximation. The extension of the eigenvector, emanating from L+, to the Lg-axis approximates the separatrix of 
the two basins.

3.2.3. Generation of dose-response: model (3.1) versus traditional approaches
In order to illustrate the fundamental difference in approach for model (3.1) compared with traditional 
dose-response, we consider single hit models. Single hit models describe a dose-response in essentially 
two steps: (1) the probability of being exposed to j pathogens given a mean dose d and (2) the probability 
that n of j pathogens survive host defences and cause infection. The probability of infection given a 
dose d is effectively determined by the discrete convolution of the probabilities given in (1) and (2) [16]. 
Furthermore, these models are based on the assumption that a single pathogen may survive and lead 
to host infection, in contrast to ‘threshold models’ or ‘Generation 0’ models [16] that are built from the 
supposition of an ‘infectious dose’, above which infection is possible and below which infection cannot 
occur. In terms of representing biological reality, single hit models are considered more plausible.

For the classic exponential model, for instance, the probability of infection given a dose d is given by

where each pathogen has an independent and equal probability R to survive and cause infection [16]. 
Note that the exponential model depends on the perspective that pathogen exposure can be described by 
a Poisson distribution, determining the probability in (1) above, and given the independence assumption 
of pathogen survival/infectivity, the resulting binomial distribution provides the probability in (2) 
above [16]. The crucial notion here is that the assumption of independent identical survival of the 
pathogens effectively removes variability among respective hosts [16].

In marked contrast to this, model (3.1) generates the dose-response function from the population­
level variation of model parameters. In essence, each member of the population has a dose threshold 
determined by their personal immune status, physiology and the characteristics of the ingested pathogen 
strain. Mathematically, recall that this threshold, for case III, is determined by the intersection of the 
separatrix and the Lg axis (figure 2). (Note that for case I, this threshold is effectively infinite, whereas 
for case II, the threshold is zero.) However, our model is not a typical ‘threshold model’ in that it is 
still possible that a single organism can cause infection. For instance, if the flow rate from stomach to 
small intestine σ is large enough, a single pathogen can survive ingestion and enter the small intestine. 
Furthermore, for relatively large α, the pathogen’s potential of escape from the host’s defence in the gut, 
model (3.1) accounts for the possibility that a single pathogen can initiate infection. For more details 
concerning the sensitivity of the dose threshold relative to the model parameters, see §4.

3.2.4. Computational cost and analytical tools
In order to predict the dose-response from model (3.1), we need to run/simulate the model with its 
parameter values. The solution approaches either the L0 or L+ state (negative or positive response, 
respectively; figure 1). To find the probability of infection for a certain dose d, the model needs to be run 
n times by randomly selecting host parameters for each run from their respective distributions. Owing 
to the random sampling of the parameters, the existence of the steady states and the dynamics as well 
as the outcomes of the model could be different for each run. If there are c positive responses out of 
n (i.e. the solution approaches L+ c times out of n) runs then the infection probability would be c/n at
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dose d. The value of n depends on the number of samples we take from the parameter space. It also 
critically depends on how small a probability we are interested in determining. To compute a probability 
of 1 x 10-10 (as reported in [17]) associated with a certain dose n should be more than or equal to 1 x 1010, 
otherwise, the model could predict 0 probability. This leads to impractically massive calculations on two 
fronts: (i) generating dose-responses at relatively low doses and (ii) using model (3.1) outputs to help 
determine parameter ranges against outbreak data.

To help reduce such computational cost, we use a geometric approach to predict positive or negative 
responses without solving model (3.1) directly. In particular, we seek to determine the threshold on the 
Lg-axis, in terms of model parameters, so that for the initial value (dose) above the threshold the trajectory 
will approach L+ and from below the threshold it will approach L0. Therefore, by comparing a given 
initial dose to this threshold, we can then predict whether it will lead to a positive or negative response 
in the host.

Based on our analysis in §3.2.1, the bistable phenomenon we seek only occurs for parameter values in 
case III. In particular, the initial dose threshold is determined by the intersection of the separatrix with 
the Lg-axis. This boundary curve is part of the stable manifold for the steady state L+, ‘connecting’ the 
Lg-axis to the steady state L + (figure 2). While globally defining the stable manifold for L + in terms of the 
model parameters may not be possible, we use a linear approximation.

The eigenvalues of the linearized system of model (3.1) at L + are given by

The eigenvector corresponding to the eigenvalue λ2 is given by the equation

An approximation to the desired threshold is obtained when line (3.3) hits the Lg-axis and is given by

The phenomenon is depicted in figure 2 and in the numerical simulation figure 3.
Now we explain how to use this threshold to obtain the dose-response. Instead of solving model (3.1) 

to find the endpoint of the trajectory, we just compute the threshold — mL + and check if the initial dose is 
above or below this threshold. For a given sample of parameters, if the initial dose is larger than — mL+, 
we count (predict) the event as a positive response. Thus the dose-response problem is simplified to: 
given a dose d, find

This new technique makes the whole computational process significantly faster as it does not require 
finding long-time solutions of the model. The accuracy of the prediction, however, depends on selecting 
the model parameters from certain regions of parameter space. In the next section, we determine 
parameter ranges so that model (3.1) represents the infection pathway in the human context and that 
using our linear approximation gives essentially the same results as obtained by solving model (3.1). 
Figures 3 and 4 show the accuracy of the prediction of the threshold approximation relative to the 
baseline parameters. We also tested the approximation method with other parameter combinations 
(satisfying criteria for case III), including extreme values, and found similar results (not shown here). 
This gives us confidence to use the threshold approximation for the rest of the results. In figure 3, the 
trajectories travel parallel to the essentially linear separatrix and then closely follow the Li-axis as they 
approach the respective steady states.

3.3. Parameter estimation
Model (3.1) has six parameters which are linked to the underlying biology: δ, σ,β and K relate to the 
individual hosts, while r and α are specific to bacterial strain as well as particulars with regards to the 
environment of the host’s gut. To compare the dose-response generated from the mechanistic model (3.1) 
with alternate dose-response models [17] that rely on human epidemiological data, we need appropriate 
values for these parameters. Recall that the population-level variation in model parameters naturally
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Figure 3. Demonstration of the behaviour of trajectories and significance of threshold (3.4) to determine the destination of trajectories. 
Trajectories starting above (below) the threshold travel parallel to the eigenvector (3.3), then along the Li-axis, approaching the steady 
state L+ (L0). (a) The full view and (b)a magnified view near the Li-axis.

Figure 4. Dose-response curves computed by using threshold approximation and exact solution. The dose-response curves from the 
two approaches are significantly close, in fact identical. 103 samples are taken from the baseline parameter space (table 2) for this 
comparison.

gives rise to the dose-response function governed by model (3.1). Therefore, the choice of sampling 
distribution on parameter space becomes important. Owing to the fact there is little known information 
concerning the details of the distributions of these parameters in the human context, we assume that all 
model parameters are distributed normally across their respective ranges. Note that in §§4 and 6, we 
provide more discussion regarding the sensitivity of model (3.1) generated dose-response function to 
various parameter distributions. In what follows, we determine biologically feasible ranges of each of 
these parameters in the context of human subjects.
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3.3.1. Estimation of bacteria killing rate (δ) in the stomach
The parameter δ is associated with bacteria killing in the stomach due to acid. The acidity or pH level of 
the stomach depends on the emptiness of the stomach. Human stomach pH ranges between 1 and 3, but 
could go beyond 5 after food consumption [55]. For instance, the fasting stomach pH ranges between 1.3 
and 1.7, but rapidly increases to around 5.0 followed by a gradual decrease during the stomach emptying 
time. Dressman et al. [56] fit an exponential model to human stomach pH following food consumption 
and found

In an in vitro experiment, Zhu et al. [32] found that E. coli bacteria hardly survive at pH 2.5, but they can 
survive about an hour and half at pH 3.0. However, when pH increases to 4.0 and beyond, the bacteria 
not only survive for a longer period but also manage to replicate. Similar results were found on the 
survival of L. monocytogenes on Sapote mamey pulp at various pH levels [57]. To estimate δ in terms of 
pH we fit an exponential model

to bacterial growth data [32] and found δ0 = 260 220 and δ1 = -3.4. The mean value of δ over a 2 h period 
is estimated to be 20.0 h-1. After this 2 h period, pH drops to a level at which bacteria can hardly survive.

3.3.2. Estimation of dispersal rate (σ)
The parameter σ is related to bacteria dispersal from the stomach to the small intestine. Since bacteria 
pass along with food, it is reasonable to assume that the bacteria dispersal rate is the same as the food 
dispersal rate. The dispersal of food or stomach emptying time depends on the individual as well as on 
the food matrix. A liquid can be passed rapidly while solid food takes longer to be processed. An in vivo 
study found that the stomach emptying time is exponentially distributed with a median half-time, T1/2, 
for solid and liquid foods, of 127 min and 80.5 min, respectively [51]. A similar study shows that the 
gastric emptying half-time and per cent gastric retention at 2 h are 68.7 min and 16.3%, respectively [52]. 
Considering these studies, we estimate the mean and standard deviation (s.d.) of dispersal rate σ to be 
0.4832 h-1 and 0.1419, respectively.

3.3.3. Estimation of growth rate (r)
The parameter r accounts for the growth or replication rate of L. monocytogenes. The estimation of the 
growth rate of bacteria in the human gut from an in vivo experiment is unrealistic. In terms of an animal 
model, the growth rate of L. monocytogenes in the small intestine of a guinea pig was estimated to be 
0.23 h-1 [28]. Schvartzman et al. found a growth rate of 1.20 h-1 in cheese medium [58]. A comprehensive 
review on bacterial growth found that the average growth of L. monocytogenes in five different growth 
media (meat products, cheese, seafood, microbiological media and liquid dairy product) is 0.863 h-1 with 
s.d. of 0.43 that ranges between 0.24 and 1.37 [59]. We consider r = 0.863 h-1 and carry out sensitivity 
analysis to observe the effect of r on the dose-response curve. However, this could be an overestimate as 
the small intestine is stressful for bacteria [37] as compared to the in vitro media [59].

3.3.4. Estimation of carrying capacity (K)
We assume that L. monocytogenes grows at the rate of r in the small intestine, where the pH level is 
relatively neutral. However, bacteria cannot grow unbounded and are limited by the environmental 
capacity. The carrying capacity K in the small intestine may depend on multiple factors including 
nutrition, space and location, competition with other organisms and the detrimental effect of chemicals 
and molecules. While the carrying capacity of L. monocytogenes in the human small intestine has not been 
estimated through in vivo experiments (due to the obvious limitations), we estimate a plausible value 
from various studies. An in vivo experiment shows that L. monocytogenes can grow in the small intestine 
of guinea pigs to 3 x 106 CFU [6]. In a monkey experiment, the maximum number of L. monocytogenes 
in the colon is found to be 1.7 x 107 CFU [10]. Melton et al. found the number of the bacteria in the 
colon of guinea pigs is around 104 CFU [9]. Since the human gut is much larger than some of these 
studied animals, we consider the carrying capacity of L. monocytogenes ranges from 107 to 109 CFU with 
mean 1.0 x 108 CFU. We also carry out a sensitivity analysis for K in §4 to observe the effect of K on the 
dose-response curve.
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3.3.5. Estimation of killing rate (β) and defence potential (α)
Because we assume the inactivation of L. monocytogenes is governed by Michaelis-Menten kinetics, 
βLi/(1 + aLi) in model (3.1), the parameters β and a must be determined relative to this mathematical 
form. The parameter β represents the killing rate of bacteria in the small intestine by the host. This is 
presumably due to the host’s macrophages which make up part of its innate immune system. Other 
immune cells, e.g. dendritic cells and plasma cells, take part in prevention of bacterial infection in the 
small intestine; however, the role of macrophages in bacterial killing is well documented [37,41]. On the 
other hand, the parameter a can be regarded as the failure of host defence, particularly when the number 
of bacteria becomes large. In other words, it is the potential of pathogens to evade the host’s defence.

To find meaningful ranges for β and a via data fitting techniques, care must be taken as a is sensitive 
to Li . That is, these parameters should ideally be determined from a single study that considers various 
initial pathogen doses. For instance, in a study by Noerjasin, listericidal activity by human macrophages 
cultured from peripheral blood monocytes was determined [60]. While Noerjasin considered both 
‘stimulated’ and ‘non-stimulated’ cases, the lack of variation in the initial inoculation dose precludes 
model fitting to find appropriate a and β values [60]. Even if Noerjasin had considered a range of initial 
inoculum levels, data from the study may be of limited use since intestinal macrophages differ somewhat 
in their defensive activities as compared to blood monocytes or macrophages in other tissues [42].

Owing to limited human data on this front, and the fact that mouse models have been widely used to 
study the immune response against L. monocytogenes because of the genetic and physiological similarities 
between a mouse and a human [18,45], we consider a study by Higginbotham et al. who reported an 
in vitro experiment regarding the killing of L. monocytogenes by mouse macrophages [41]. It shows that 
macrophages can kill a significant portion of L. monocytogenes. From this study, we estimate mean values 
of β = 0.173 and a = 6.76 x 10—8. However, since β on average is less than the range of values for r (see 
§3.3.3), the analysis of model (3.1) indicates the parameter region satisfies the condition for case II (see 
§3.2.1). That is, for any initial pathogen exposure (however small) there will be a positive response. In 
order for model (3.1) to describe dose-dependent responses, β should be larger than r. Assuming that r 
in §3.3.3 is not overestimated, this finding shows that the value of β obtained from this study could be an 
underestimate. Otherwise, it indicates that in addition to macrophages other immune cells or chemicals 
may cause bacterial death or suppress bacterial numbers in the small intestine.

3.3.6. Further estimation of β anda

Because of the aforementioned limitations concerning in vitro human and in vivo murine data to inform β 
and a, we turn to outbreak scenarios associated to human listeriosis cases. In particular, we make use of 
our threshold approximation, equation (3.5) (coming from §3.2.4), in conjunction with the Finland butter 
outbreak surveillance data [18] to estimate a and β by using a least-squares error minimization.

It was estimated that the mean infection probability and mean dose in that outbreak was 1.0 x 
10-3 and 8.2 x 103 CFU, respectively [18]. While more elaborate fitting schemes involving maximum­
likelihood [61] estimates could be used to approximate ranges for β and a, to illustrate our model 
approach and minimize extensive computations, we use a least-squares minimization to fit model 
(3.1) outputs to the butter outbreak data [18]. More precisely, using Matlab’s ‘fmincon’ subroutine we 
minimize the following error function:

where x(di) is the probability of infection from surveillance data at dose di and x(di) is the model 
generated probability at dose di; n is the number of observations. Note that x is obtained by randomly 
selecting values of parameters r, σ, K, a and β from their respective distributions (assumed to be normal 
in this case) and calculating the resulting probability of a positive response from model (3.1) (see §3.2.1). 
The mean and standard deviation of the first three parameters are estimated in §3.3. The mean and 
standard deviation of β and a are estimated from this minimization search (3.7). In particular, the value 
of a is estimated in log scale, that is, we estimate a1, where a = 10a1 . Since the outbreak information is 
summarized via the mean infection probability relative to the mean dose, equation (3.7) becomes

where d1 = 8.2 x 103. The result of this fit (expressed as mean ± standard deviation) indicates that a = 
10-3.352±0.530 and β = 4.904 ± 0.750. With regard to these ranges for a and β, we mention three key points.
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Table 2. The baseline values of the model parameters.

parameter description
baseline value 
(mean ± s.d.) references

r growth rate 0.863 ± 0.43 h-1 [59]
..K.....................................................

carrying capacity
........................... 108±...1.CFU....................................................

[10]

σ dispersal rate
........................... 0.4832.±...0.1419.h-...1.........................

[52]
........................................................

killing rate
........................... 4.... 9...0...±... 0... 7..5..h...-..1...................................

data fit, [18]

α saturating factor
........................... 1..0..-..3.35±...0.53..C..F..U..-...1................................. ................................d..a..t.a...fi..t.,..[..1.8..]...

(i) The estimated values regarding β and α depend on the accuracy of the threshold approximation, 
equation (3.5). We employed the following logic to determine these fits: first, we assumed that formula 
(3.5) is accurate and proceeded with the minimization calculation, which in turn provided possible 
ranges for β and α . We then performed multiple simulations to compare the dose-response function 
coming from both the long-time solution prediction of model (3.1) and the threshold approximation. A 
typical result is illustrated in figure 4, showcasing the accuracy of the threshold approximation. (ii) Recall 
that model (3.1) output quantifies the level of colonization of L. monocytogenes in the small intestine. 
However, the mean infection probability and mean dose from the butter outbreak are built from infection 
data from [18] and, therefore, our model output x(di) and the datum x(di) for the fit are not necessarily 
in the same category of information. (iii) The outbreak data used to determine β and α are associated 
mostly with haematological and organ transplant patients and, therefore, are not representative of a 
‘general’ population; see §6 for a discussion concerning the implications of both (ii) and (iii) above.

This completes the estimation of the parameters of model (3.1). To compare our estimation and model 
generated dose-response curve, we defined the widely used exponential dose-response model

where R is the probability of host-pathogen interaction and p is the probability of infection when a given 
dose d is ingested by the host. For comparison, we estimate R = 1.22 x 10—7 from the same data source 
[18]. The dose-response curve generated by model (3.9) is also known as the exponential dose-response 
which has been extensively used by FAO/WHO for microbial risk assessment [18]. Upon completing 
a sensitivity analysis in the next section, we will vary the most sensitive parameters and compare 
the predicted dose-response curves with the exponential dose-response (3.9) in §5. The estimated 
parameters are given in table 2.

4. Sensitivity analysis
We estimated the model parameters from the literature and from data fits so that these parameters are 
closely related to the dynamics of L. monocytogenes in the human gut environment. However, since the 
parameters are from multiple sources and are translated from in vitro experiments, uncertainty remains. 
The following sensitivity analysis reflects the effect of uncertainty on the results of the model as well as 
identifies which parameters have key roles and which ones dominate model (3.1) prediction. In order to 
observe the sensitivity of the model solution and threshold on the baseline parameters, we calculate 
the partial rank correlation coefficient (PRCC) using Latin hypercube sampling (here the parameter 
values are randomly sampled without replacement from normal distributions across their respective 
ranges) [62].

4.1. Sensitivity of long-time solutions of model (3.1)
First, we look into the sensitivity of the long-time model solutions. Given an initial value (dose) of the 
model, PRCCs are calculated over the simulation period. Taking the average of these PRCCs, we obtain 
the net effect on the model solution from the parameters as illustrated in figures 5 and 6. These show 
that the model solutions are mostly sensitive to r, σ and β at lower initial doses (2 log10 CFU) and to 
r, K and β at higher initial doses (8 log10 CFU). The two parameters r and β are significant in both 
scenarios. Given the model form in (3.1), this is a logical result as the pathogen growth rate r and the
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Figure 5. Sensitivity of the model solution on the parameters at dose 2 log10. It indicates that the model solution is most sensitive to the 
bacterial growth rate r followed by the pathogen killing rate β at the low dose.

Figure 6. Sensitivity of the model solution on the parameters at dose 8 log10. It indicates that the model solution is most sensitive to the 
carrying capacity K followed by the bacterial growth rate r at the higher dose.

pathogen killing rate (via immune cells, etc.) β are parameters, regardless of the initial ingested dose, 
that can respectively increase/decrease the population level of L. monocytogenes in the small intestine. 
Furthermore, the increased effect of β at low doses (figure 5) compared with high doses (figure 6) 
corresponds to the intuitive notion that the immune response has greater efficacy at lower doses. On the 
other hand, the role of the carrying capacity K is critical when the initial dose is large. This is expected as 
with a lower dose the pathogen dies out in most cases (any choice of parameters) and could not reach the 
carrying capacity, while considering a higher dose, the bacteria can quickly reach the carrying capacity 
and remain bounded by K.

4.2. Sensitivity of the threshold approximation (3.5)
We examine the sensitivity of the threshold (—mL+) relative to the model parameters and find that a 
and r are the most sensitive parameters as shown in figure 7. Note that the sensitivity of the threshold 
is inversely related to the sensitivity of the infection probability. That is, if the threshold decreases then 
the responses or probability of infection increases. In particular, figure 7 indicates that as r or α increases 
the threshold decreases which in turn increases the positive responses. Therefore, α and r are the most
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Figure 7. Sensitivity of the threshold (-mL+) or the reciprocal of infection probability on the parameters. It shows that the threshold 
(-mL+) is most sensitive to a and r followed by σ and β. If β decreases or the other parameters increase then the probability of 
infection will increase according to the relative magnitudes indicated by the PRCCs.

critical parameters that dictate the shape of the dose-response curve. The role and significance of r 
on the pathogen survival were previously discussed. The parameter α could be associated with the 
virulence/strain of L. monocytogenes. A larger α corresponds to a more virulent pathogen that has the 
potential to avoid the host defence. Thus, a larger α should increase the infection probability as seen in 
figure 7. It is important to mention that if we assume that the parameters are distributed across their 
respective ranges according to a uniform distribution, the sensitivity of the threshold (3.5) is similar to 
that of figure 7 with α and r again possessing the most crucial influence (results not shown).

Finally, it is interesting to note that even though the model solutions are not sensitive to σ 
(figures 5 and 6), the threshold — mL + is (figure 7). Recall that σ quantifies the average rate of entry 
of L. monocytogenes into the small intestine. This result indicates that cumulative doses could play an 
important role for causing infection and increase the infection probability. The parameter δ associated 
with bacteria killing in the stomach has an effect similar to σ on the threshold but is not shown in the 
sensitivity analysis. However, the role and significance of δ will be discussed in §6.

5. Dose-response curves and comparative results
Using the parameters given in table 2, we use model (3.1) to compute dose-response curves in order 
to compare our results with the exponential dose-response (Finland butter outbreak [18]). The dose­
response function is generated by the model using random samples of α, β, r, σ and K from the 
normal distributions across their respective ranges. The predicted dose-response relationship along with 
the exponential dose-response is shown in figure 8. The significance of our model prediction is that 
variations in individual immune response across the subpopulation (we are considering the group of 
haematological and organ transplant patients involved in the Finland outbreak) play a dominant role 
in dictating the shape of the predicted dose-response relationship. Note that model (3.1) is run with 
randomly selected parameters so one cannot expect an identical dose-response curve from the repetition 
of the process. Therefore, in relation to the respective doses di, we run model (3.1) to produce n curves 
and then compute the 95% CI. Figure 8 illustrates the model predicted dose-response relationship as a 
shaded region.

For sufficiently high doses, it is reasonable to expect that the variation with regards to the host’s 
environment and ingested pathogen does not significantly alter the response threshold for model (3.1) 
and hence both the exponential model and model (3.1) should generate similar predictions (figure 8). 
However, for a lower range of doses, this variation in strain virulence and host immune status 
considerably affects the response threshold of model (3.1), leading to predictive possibilities outside the 
scope of the exponential model. One reason for this concerns the fact that the exponential model, used to 
produce the exponential dose-response, ‘has the oversimplifying assumption of a constant probability 
of infection following ingestion of L. monocytogenes in a given population’ [17]. By contrast, the dose 
threshold that determines the positive or negative response of model (3.1) is given by a combination of 
parameters that can vary across strain and individual host characteristics. Compared to the exponential 
dose-response, figure 8 illustrates that our model predicts lower responses over the low doses (approx.
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Figure 8. Comparative dose-responses. The exponential dose-response curve is represented by the squares (green) and model (3.1) 
predicted 95% CI [63] together with the mean curve are given by the shading and circles, respectively.

Figure 9. Effect of distribution of β on dose-response curve. Exponential (green) curve is generated by (3.9) and three other curves 
are generated by model (3.1) with the variation of distribution of β. Variation of standard deviation (s.d.) does not affect the curves 
significantly. The estimated standard deviation (s.d.) of β is βs.d. = 0.75; s.d. is varied by 0.1 to observe the effect of it on the dose­
response curve.

dose 4 log10 to 1 log10), but the responses for the high doses (beyond dose 7 log10) are not significantly 
different from those of the exponential dose-response (figure 8). Recall that dose-response prediction 
of model (3.1) represents intestinal colonization rather than infection. In line with this notion, for 
doses between 1 log10 and 4 log10, the results in figure 8 suggest that the exponential dose-response 
overestimates the infection risk; see §6 for further discussion.

Since the variation in the host’s immune system parameters, α and β, has a significant influence on the 
dose-response curve, we investigate the effect on the dose-responses relative to adjusting the standard 
deviation (s.d.) of the normal distribution for each respective parameter. Figure 9 indicates that the dose­
response curve is not sensitive to variations in the spread corresponding to β, whereas, with respect 
to α, variation in the spread alters dose-responses considerably (figure 10). As the s.d. of α decreases, 
the response curve begins to decline sharply, indicating less influence on response. However, for a 
larger s.d. (0.63), the curve shows higher responses through the low doses. This behaviour is consistent 
with our sensitivity analysis in §4, reinforcing the importance of a quantified connection between the 
probability of infection in a population and the variation in individual immune responses. Furthermore, 
the results in figure 10 suggest that the particular distribution of α across a population is crucial for 
dose-response prediction.
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Figure 10. Effect of distribution of a on dose-response curve. Exponential (green) curve is generated by (3.9) and three other curves 
are generated by model (3.1) with the variation of distribution of α. Three model generated curves corresponding to different standard 
deviations are remarkably different. The estimated standard deviation (s.d.) of a is as.d. = 0.53; s.d. is varied by 0.1 to observe the effect 
of it on the dose-response curve.

6. Discussion
Incorporating a mechanistic approach for dose-response modelling is critically important in food safety 
and microbial risk assessment. Supported by the quantification of key physiological processes, it has an 
inherent power to connect dose and risk in terms of these mechanisms. In particular, by quantifying the 
interaction between the human gut environment and L. monocytogenes, model (3.1) predicts when the 
bacteria can cause an infection or at least establish colonization of the small intestinal epithelium. The 
importance here is that the probability of infection (colonization) is linked to biologically meaningful 
parameters associated to the particulars of pathogen strain, the digestion process, as well as the human 
host immune status.

In terms of the recent approaches for characterizing risk and dose-response regarding foodborne 
pathogens, our mechanistic model serves a complementary role. For instance, the key events framework 
is a method for studying foodborne disease from the perspective that the individual ‘steps from ingestion 
to infection are described as a conceptual structure for advancing the dose response models’ [20]. 
However, characterizing, in general, the cascade of transfer probabilities from one step to the next is 
non-trivial. While these probabilities may be estimated by using data from animal models or from human 
outbreaks, such correlative techniques have limited applicability and may not be useful or reliable for 
predictions under different circumstances. On the other hand, mechanistic models such as model (3.1) are 
useful as predictive tools to quantify transfer probabilities at potentially any number of steps involved 
in the key events framework. For example, by interpreting a positive response (given a particular dose) 
from our model (3.1) as the probability that a certain dose of L. monocytogenes can colonize the small 
intestine, model (3.1) can treat the steps from ingestion to colonization across a range of pathogen 
strains and characteristics associated to individual human digestive and immune processes within a 
population.

In this regard, model (3.1) is a powerful tool for predicting risk; however, care must be taken as 
the underlying assumption that colonization implies infection is not necessarily true (2-10% of the 
general population may temporarily carry L. monocytogenes in their intestinal tract without any negative 
health effect) [27]. That is, our model outputs for the dose-response really characterize the risk of 
intestinal colonization. While the distinction between infection and colonization may be quite difficult 
to describe quantitatively, at the very least the risk of colonization provides an upper bound on the 
risk of infection. Therefore, in the context of the Finland outbreak, comparing to the exponential model 
which is commonly used by public health risk assessors, the dose-response relationship predicted 
by model (3.1) is essentially different for the lower doses (1 log10 to 4 log10). However, because the 
exponential dose-response curve was built from outbreak data involving individuals with compromised 
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health [18], we would expect the difference between the infection and colonization risk (and hence the 
difference in the predictions from the respective models) to be smaller than the difference involving a 
more general or heterogeneous population. To appreciate this, note that the exponential dose-response 
curve is given by p(d) = 1 — e—Rxd, where R = 1.22 x 10-7 as compared to an R value of 1.19 x 10-10 
corresponding to a more general population [17]. Also, in the context of a L. monocytogenes outbreak 
among haematological and organ transplant patients, the high risk of infection (as compared with a 
general human population) provides some justification for using the Finland outbreak data to determine 
the ranges for the immune parameters a and β. That is, while we indicated that x(d) and x(d) (coming 
from formula (3.8)) are not exactly in the same category of information, that is, x(d) quantifies probability 
of infection from the outbreak data and x(d) represents that colonization probability predicted from 
model (3.1), this discrepancy is much less than in the context of a general population. Furthermore, 
it is important to mention that many studies that use animal surrogates to determine dose-response 
outcomes associated to L. monocytogenes do not clearly articulate the distinction between colonization and 
infection [10,11,13].

In line with predicting the risk of infection or at least colonization in the small intestine, the utility 
of model (3.1) relies on the determination of appropriate parameter distributions. Certain parameters, 
such as the growth rate, r, of a particular strain of L. monocytogenes attempting to colonize the small 
intestine, are impossible to measure directly in humans. Nevertheless, because the parameters in model 
(3.1) provide a biological connection with the mathematical forms used to represent the underlying 
mechanisms, as opposed to merely descriptive values that may lack clear biological meaning, they can 
be estimated with data from a variety of experiments rather than relying only on animal models or past 
outbreak scenarios.

Dictating the dose-response relationship, the sensitivity analysis in §4 indicates that α is the most 
influential parameter followed by the growth rate r (figure 7). In fact, α is the key parameter for model 
(3.1) in that it mathematically allows the possibility of dose-dependent relationships. In other words, 
when α = 0, the model outcomes are no longer dependent on the initial doses (see case III in §3.2.4). 
Therefore, proper interpretation and appropriate values of α are necessary. In addition to determining the 
correct range for α, our analysis in §4 illustrates that the specific distribution of α on its range significantly 
affects the dose-response prediction of model (3.1). Recall that α quantifies the ability of the pathogen in 
question to reduce the efficacy of the immune system killing rate, β, as the pathogen multiplies. While it 
may be difficult to characterize the distribution of α from an appropriate in vitro experiment tracking the 
listericidal activity of human small intestine macrophages, the mean and standard deviation associated to 
α may suffice. That is, given the mean and standard deviation of α, one can input a variety of distributions 
into model (3.1), resulting in a thickened curve or ‘band’ of positive response versus ingested dose that 
elucidates best/worst case possibilities. Note that this type of analysis can be administered for other 
significant parameter values, quantifying the sensitivity of the dose-response function relative to the 
distribution of these parameters. This work is relegated to future research as specific data are needed 
to help ensure at least partial identifiability of such parameters. See the next paragraph for suggestions 
regarding such data collection.

In addition, β is a critically important parameter as it is closely related to α in the host-pathogen 
interaction. Owing to the lack of human data in the literature regarding the interaction between human 
small intestine macrophages and L. monocytogenes, we back calculated ranges for β and α using the 
surveillance data from the Finland butter outbreak [18]. However, these results depend on the fact 
that the underlying population is unhealthy and that at relatively higher doses, both the exponential 
model and model (3.1) should predict similar positive responses, as discussed in §3.3.6. In the light of 
the aforementioned suppositions, simplifying assumptions used to build the exponential curve, and the 
fact that the response threshold (—mL+) for model (3.1) is highly sensitive to a, the ranges of a and 
β should ideally be tested against estimations from a single study that incorporates different initial 
inoculum levels of L. monocytogenes. In particular, we suggest that scientific experiments to estimate 
these parameters involve a simulated human gut environment. Lately, the human gastrointestinal 
microbiome has been studied using a new in vitro model known as the HIM module [64]. As this 
model serves to mimic the fundamental in vivo mechanisms that govern the gastrointestinal microbial 
community, it may also prove to be an insightful parametrization tool for new mechanistic dose­
response models such as model (3.1). Classifying distributions of a and β in this context by studying 
intestinal antimicrobial (immune) cells from various immunocompromised subgroups may prove to be 
invaluable.

From a mathematical perspective, model (3.1) exhibits bistable phenomena due to the equation for Li, 
describing the evolution of the pathogen in the environment of the small intestine. The first part of this 
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equation describes the growth of the bacteria and the second part

describes the killing of bacteria. This killing form is important as it determines the bistable phenomena. 
Any mathematical form that can exhibit bistability and is biologically feasible could be a candidate to 
replace D(Li). A possible candidate for D(Li) is given by

We aim to investigate, in upcoming projects, which mathematical form could best fit surveillance/ 
experimental data and interpret the host-pathogen interaction.

On another front, the parameter δ, which quantifies the pathogen killing rate due to the pH level 
in the stomach, is crucial for determining dose-responses. In this study, we fixed δ at its mean value 
estimated from the literature (see §3.3.1), and therefore it was not included in the sensitivity analysis 
in §4. However, because of the potential variation in the stomach environment, due to the use of H2 
blockers, or to differences in the ingested food matrix that serves as a vehicle of contamination, as well as 
pathogen strain and history, it may be important to quantify the dynamics of δ in terms of these factors. 
At the very least, classifying an average value of δ as a function of initial dose and food type would 
enable model (3.1) to become a profitable tool for regulatory agencies, especially in the light of the fact 
that non-traditional foods including ‘pre-cut fruits and vegetables, ice-cream, cantaloupe, mung bean 
sprouts, stone fruits and caramel apples’ have recently been associated with listeriosis [27].

In the quest of understanding the dose-response relationship of L. monocytogenes in the human host, 
testing novel approaches is of great priority. Mechanistic models could be the potential tools to elucidate 
further insights of this paradigm. Independent studies supported by scientific experiments are necessary 
to validate this novel approach.
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