50 research outputs found

    Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments

    Get PDF
    A bis-epoxide monomer was synthesised in two steps from (R)-carvone, a terpenoid renewable feedstock derived from spearmint oil, and used to prepare β-aminoalcohol oligomers in polyaddition reactions with bis-amines without requiring solvent or catalyst. A sub-set of the resultant materials were readily water soluble and were investigated for antifungal activity in combination with the fungicide iodopropynyl-butylcarbamate (IPBC) or the antifungal drug amphotericin B. The oligo-(β-aminoalcohol)s alone were inactive against Trichoderma virens and Candida albicans but in combination with IPBC and amphotericin B demonstrated synergistic growth-inhibition of both fungi. Quantitative analysis showed that the presence of the terpene-based oligomers decreased the minimum inhibitory concentration (MIC) of IPBC by up to 64-fold and of amphotericin B by 8-fold. The efficacy of the combined formulation was further demonstrated with agar disk diffusion assays, which revealed that IPBC and amphotericin B reduced the growth of the fungi, as shown by zones of inhibition, to a greater extent when in the presence of the oligo-(β-aminoalcohol)s. These data suggest potential future use of these renewable feedstock derived oligomers in antifungal material and related biomedical applications

    Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. Drug Metab Dispos 30:576–581.

    No full text
    ABSTRACT: In a previous study, we used human liver microsomes for the first time to study cytochrome P450 (P450)-mediated oxidation of the flavonoid galangin. The combination of CYP1A2 and CYP2C9 produced a V max /K m value of 13.6 ŘŽ 1.1 l/min/mg of protein. In the present extended study, we determined glucuronidation rates for galangin with the same microsomes. Two major and one minor glucuronide were identified by liquid chromatography/mass spectrometry. The V max /K m values for the two major glucuronides conjugated in the 7-and 3-positions were 155 ŘŽ 30 and 427 ŘŽ 26 l/min/mg of protein, thus, exceeding that of oxidation by 11 and 31 times, respectively. This highly efficient glucuronidation appeared to be catalyzed mainly by the UDP-glucuronosyltransferase (UGT)1A9 isoform but also by UGT1A1 and UGT2B15. Sulfation of galangin by the human liver cytosol, mediated mainly but not exclusively by sulfotransferase (SULT) 1A1, also appeared to be efficient. These conclusions were strongly supported by experiments using the S9 fraction of the human liver, in which all three metabolic pathways could be directly compared. When galangin metabolism was examined in fresh plated hepatocytes from six donors, glucuronidation clearly predominated followed by sulfation. Oxidation occurred only to a minor extent in two of the donors. This study for the first time establishes that glucuronidation and sulfation of galangin, and maybe other flavonoids, are more efficient than P450-mediated oxidation, clearly being the metabolic pathways of choice in intact cells and therefore likely also in vivo

    HIGH ABSORPTION BUT VERY LOW BIOAVAILABILITY OF ORAL RESVERATROL IN HUMANS

    No full text

    Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host

    No full text
    Eliminating human parasitic disease often requires interrupting complex transmission pathways. Even when drugs to treat people are available, disease control can be difficult if the parasite can persist in nonhuman hosts. Here, we show that restoration of a natural predator of a parasite\u27s intermediate hosts may enhance drug-based schistosomiasis control. Our study site was the Senegal River Basin, where villagers suffered a massive outbreak and persistent epidemic after the 1986 completion of the Diama Dam. The dam blocked the annual migration of native river prawns (Macrobrachium vollenhoveni) that are voracious predators of the snail intermediate hosts for schistosomiasis. We tested schistosomiasis control by reintroduced river prawns in a before-after-control-impact field experiment that tracked parasitism in snails and people at two matched villages after prawns were stocked at one village\u27s river access point. The abundance of infected snails was 80% lower at that village, presumably because prawn predation reduced the abundance and average life span of latently infected snails. As expected from a reduction in infected snails, human schistosomiasis prevalence was 18 ± 5% lower and egg burden was 50 ± 8% lower at the prawn-stocking village compared with the control village. In a mathematical model of the system, stocking prawns, coupled with infrequent mass drug treatment, eliminates schistosomiasis from high-transmission sites. We conclude that restoring river prawns could be a novel contribution to controlling, or eliminating, schistosomiasis
    corecore