1,100 research outputs found

    Korean Divorce Law on Claims for Property Division: Dividing Retirement Allowance in Divorce

    Get PDF
    As South Koreans divorce closer to the retirement age, the issue of whether retirement allowance should be divided upon divorce has become more prevalent. The applicable law in the division of the retirement allowance in a divorce is Article 839-2 of the Civil Code. This article provides that property realized through the cooperation of both spouses shall be divided in divorce by agreement. The Korean courts have historically undervalued the contribution of spouses who provide housework by giving them less property in the division of acquired marital property. Retirement allowances pose problems because a spouse can contribute in acquiring them solely by providing housework, which is difficult to quantify. Furthermore, retirement allowances do not become realized property until the retired spouse receives the retirement allowance; thus the unemployed spouse may not receive a fair amount of property if they divorce before retirement. The Ministry of Justice proposed an amendment to Article 839-2 to include the language that property realized by cooperation shall be divided equally. Once the amendment comes into effect later this year, courts should divide the received retirement allowance equally, regardless of whether one or both parties were economic contributors. Courts, however, should retain the discretion to determine the amount of property each spouse receives to reflect different circumstances, such as the employed spouse’s unreceived retirement allowances. Additional amendments to include property that will be realized in the near future are recommended

    Bio-Artificial Synergies for Grasp Posture Control of Supernumerary Robotic Fingers

    Get PDF
    A new type of wrist-mounted robot, the Supernumerary Robotic (SR) Fingers, is proposed to work closely with the human hand and aid the human in performing a variety of prehensile tasks. For people with diminished functionality of their hands, these robotic fingers could provide the opportunity to live with more independence and work more productively. A natural and implicit coordination between the SR Fingers and the human fingers is required so the robot can be transformed to act as part of the human body. This paper presents a novel control algorithm, termed “Bio-Artificial Synergies”, which enables the SR and human fingers to share the task load together and adapt to diverse task conditions. Through grasp experiments and data analysis, postural synergies were found for a seven-fingered hand comprised of two SR Fingers and five human fingers. The synergy-based control law was then extracted from the experimental data using Partial Least Squares (PLS) regression and tested on the SR Finger prototype as a proof of concept

    Spherical void expansion in rubber-like materials: The stabilizing effects of viscosity and inertia

    Get PDF
    Dynamic cavitation is known to be a typical failure mechanism in rubber-like solids. While the mechanical behaviour of these materials is generally rate-dependent, the number of theoretical and numerical works addressing the problem of cavitation using nonlinear viscoelastic constitutive models is scarce. It has been only in recent years when some authors have suggested that cavitation in rubber-like materials is a dynamic fracture process strongly affected by the rate-dependent behaviour of the material because of the large strains and strain rates that develop near the cavity. In the present work we further investigate previous idea and perform finite element simulations to model the dynamic expansion of a spherical cavity embedded into a rubber-like ball and subjected to internal pressure. To describe the mechanical behaviour of the rubber-like material we have used an experimentally calibrated constitutive model which includes rate-dependent effects and material failure. The numerical results demonstrate that inertia and viscosity play a fundamental role in the cavitation process since they stabilize the material behaviour and thus delay failure

    Multi-probe robotic positioner for cryoablation in MRI

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 116-118).This thesis describes the design of a guidance device for faster and more accurate targeting of multiple probes during cryoablation and other percutaneous interventions performed in closed bore magnetic resonance (MR) imaging systems. The device is intended to be mounted onto a Siemens 110 mm MR loop coil that rests on the patient and contains a cable driven two-degree-of- freedom spherical mechanism that orientates the intervention probes about a remote center of motion located 15 mm above the skin entry point. A carriage, pulled by strong and low stretch cables, can position up to three intervention probes as it travels on a rotating hoop. Its motion is constrained by a custom designed roller bearing to minimize friction. A thumbscrew fastened latch allows a probe to be engaged in a guide that constrains the probe along a specific trajectory. The probe can also be disengaged from its track, freeing it to move with respiration and enabling the guide to be repositioned for another probe to be inserted. Compact MR compatible piezoelectric motors are used to actuate the system. A prototype was built from 3D printed ABS plastic as a proof of concept. Bench level evaluation demonstrated that each component of the device performs according to the design specifications. The device performance was characterized by analyzing still images taken before and after movement, which yielded sub-degree accuracy, sub-degree repeatability near vertical position, and an incremental step resolution of at least 0.5 degree. Upon further developments of the registration and calibration modules in 3D slicer to interface the robot with image data, evaluation of the device in MRI will be performed.by Faye Y. Wu.S.M
    • …
    corecore