93 research outputs found
Analysis of landfill gas migration by use of autonomous gas monitoring platforms
Autonomous gas sensing platforms have been developed to facilitate the long-term continuous monitoring of landfill gas concentrations. The analysis of a municipal landfill site in Ireland forms part of an on-going collaboration with the Environmental Protection Agency in monitoring the migration of greenhouse gases, i.e. methane and carbon dioxide, emanating from the landfill site. Target gas concentrations were automatically recorded via infrared gas sensors calibrated for the respective gases, with this data being logged remotely every six hours to a central base-station. The autonomous platform with its web-based portal interface provides a flexible alternative to the existing labor-intensive, manual monitoring routines. Frequent occurrences of 70% v/v methane and 6% v/v carbon dioxide were substantially in breach of the regulatory limits of 1.5% v/v and 1.0% v/v, respectively. These excessive levels of gas migration were analyzed with respect to SCADA flare data, on-site measurements and meteorological data
Measurement of representative landfill gas migration samples at landfill perimeters: a case study
This paper describes the development of a fully integrated autonomous system based on existing infrared sensing technology capable of monitoring landfill gas migration (specifically carbon dioxide and methane) at landfill sites. Sampling using the described system was validated against the industry standard, GA2000 Plus hand held device, manufactured by Geotechnical Instruments Inc. As a consequence of repeated sampling during validation experiments, fluctuations in the gas mixtures became apparent. This initiated a parallel study into what constitutes a representative sample of landfill gas migration as reported to the Environmental Protection Agency. The work described in this paper shows that gas mixture concentrations change with depth of extraction from the borehole well, but with evidence of a steady state after a time
Wearable gas sensors
Wearable sensing applications have attracted much attention in recent years. The aim of the FP6 funded Proetex project is improving safety and efficiency of emergency personnel by developing integrated wearable sensor systems. This paper describes recent developments in the integration of sensing platforms into wearables for the continuous monitoring of environmentally harmful gases surrounding emergency personnel. Low-power miniature CO and CO2 sensors have been successfully integrated in a jacket collar and boot worn by emergency personnel. These sensors need to provide information about the level of gas in the surrounding environment without obstructing the activities of the wearer. This has been achieved by integrating special pockets on the jacket and boot of fire-fighters. Each sensor is attached to a sensing module for signal accommodation and data transfer. The sensor performance has been evaluated by simulation of real-life situations.
These wearable gas sensors will dramatically improve personnel awareness of potential hazard and can function as a personal warning system. In this way, fire-fighter’s jacket and boot not only protect the wearer, but have a second function of providing valuable information on external hazards.
The authors gratefully acknowledge the financial support of the Science Foundation Ireland (07/CE/I1147) and the EU project FP6-2004-IST-4-026987. We also acknowledge contribution of University of Pisa (Italy), Zarlink Semiconductor (UK), and Diadora/Invicta Group (Italy)
Monitoring of gas emissions at landfill sites using autonomous gas sensors
Executive Summary
This report details the work carried out during the Smart
Plant project (2005-AIC-MS-43-M4). As part of this
research, an autonomous platform for monitoring
greenhouse gases (methane (CH4), carbon dioxide
(CO2)) has been developed, prototyped and field
validated. The modular design employed means that the
platform can be readily adapted for a variety of
applications involving these and other target gases such
as hydrogen sulfide (H2S), ammonia (NH3) and carbon
monoxide (CO) and the authors are in the process of
completing several short demonstrator projects to
illustrate the potential of the platform for some of these
applications. The field validation for the greenhouse gas
monitoring platform was carried out at two landfill sites in
Ireland. The unit was used to monitor the concentration of
CO2 and CH4 gas at perimeter borehole wells. The final
prototype was deployed for over 4 months and
successfully extracted samples from the assigned
perimeter borehole well headspace, measured them and
sent the data to a database via a global system for mobile
(GSM) communications. The data were represented via
an updating graph in a web interface. Sampling was
carried out twice per day, giving a 60-fold increase on
current monitoring procedures which provide one gas
concentration measurement per month.
From additional work described in this report, a
number of conclusions were drawn regarding lateral
landfill gas migration on a landfill site and the
management of this migration to the site’s perimeter.
To provide frequent, reliable monitoring of landfill gas
migration to perimeter borehole wells, the unit needs
to:
• Be fully autonomous;
• Be capable of extracting a gas sample from a
borehole well independently of personnel;
• Be able to relay the data in near real time to a base
station; and
• Have sensors with a range capable of adequately
monitoring gas events accurately at all times.
The authors believe that a unit capable of such
monitoring has been developed and validated. This
unit provides a powerful tool for effective management
of landfill site gases. The effectiveness of this unit has
been recognised by the site management team at the
long-term deployment trial site, and the data gathered
have been used to improve the day-to-day operations
and gas management system on-site.
The authors make the following recommendations:
1. The dynamics of the landfill gas management
system cannot be captured by taking
measurements once per month; thus, a minimum
sampling rate of once per day is advised.
2. The sampling protocol should be changed:
(i) Borehole well samples should not be taken
from the top of the well but should be
extracted at a depth within the headspace
(0.5–1.0 m). The measurement depth will be
dependent on the water table and headspace
depth within the borehole well.
(ii) The sampling time should be increased to 3
min to obtain a steady-state measurement
from the headspace and to take a
representative sample; and
(iii) For continuous monitoring on-site, the
extracted sample should be recycled back
into the borehole well. However, for
compliance monitoring, the sample should
not be returned to the borehole well.
3. Devices should be placed at all borehole wells so
the balance on the site can be maintained through
the gas management system and extraction
issues can be quickly recognised and addressed
before there are events of high gas migration to
the perimeter.
4. A pilot study should be carried out by the EPA
using 10 of these autonomous devices over three
to five sites to show the need and value for this
type of sampling on Irish landfill sites
Landfill gas monitoring network - development of wireless sensor network platforms
A wireless sensor network has been developed for the application of landfill gas monitoring, specifically sensing methane, carbon dioxide and extraction pressure. This collaborative work with the Irish Environmental Protection Agency has been motivated by the need to reduce greenhouse gas emissions as well as aiming to improve landfill gas management and utilisation. This paper describes the preliminary findings of an ongoing trial deployment of multiple sensing platforms on an active landfill facility; data has been acquired for nine months to date. The platforms have operated successfully despite adverse on-site conditions, with validity demonstrated by reasonably strong correlation with independent on-site measurements. The increased temporal and spatial resolution provided by distributed sensor platforms is discussed with regard to improving landfill gas management practice
Distributed environmental monitoring
With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed
Development of optical sensing system for detection of Fe ions using conductive polymer actuator based microfluidic pump
In this paper, we present a novel microfluidic optical
sensing system by combining a low-power conductive polymer
-based microfluidic pump and a microfluidic chip integrated
with an optical sensor. A self priming microfluidic pump is
developed using a polypyrrole. A microfluidic chip- optical
detector module that contained an optical cuvette with LED
and photo-diode optical sensing module was fabricated.
Integration of the micro pump and the microfluidic chips
complete the sensing system. The pump performance and its
application in chemical analysis have been demonstrated in the
detection of Fe ions
Wearable sensing application- carbon dioxide monitoring for emergency personnel using wearable sensors
The development of wearable sensing technologies is
a great challenge which is being addressed by the Proetex FP6 project (www.proetex.org). Its main aim is the development of wearable sensors to improve the safety and efficiency of emergency personnel. This will be achieved by continuous, real-time monitoring of vital signs, posture, activity, and external hazards surrounding emergency workers. We report here the development of carbon
dioxide (CO2) sensing boot by incorporating commercially available CO2 sensor with a wireless platform into the boot assembly. Carefully selected commercially available sensors have been tested. Some of the key characteristics of the selected sensors are high selectivity and sensitivity, robustness and the power demand. This paper discusses some of the results of CO2 sensor tests and sensor
integration with wireless data transmission
- …