42 research outputs found

    Broadband surface-wave transformation cloak

    Get PDF
    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits.National Natural Science Foundation (China) (Grant 61322501)National Natural Science Foundation (China) (Grant 61275183)National Top-Notch Young Professionals Program (Grant FANEDDC-200950)Program for New Century Excellent Talents (NCET-12-0489)Fundamental Research Funds for the Central Universities (Grant FRFCU-2014XZZX003-24)Nanyang Assistant Professorship Start-Up GrantSingapore. Ministry of Education (Grant Tier 1 RG27/12)Singapore. Ministry of Education (Grant MOE2011-T3-1-005)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)United States. Dept. of Energy (Solid-State Solar-Thermal Energy Conversion Center Grant de-sc0001299

    New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east–west lineage split and genetic mixture within western subtropical China

    Get PDF
    Background Subtropical China is a global center of biodiversity and one of the most important refugia worldwide. Mountains play an important role in conserving the genetic resources of species. Liriodendron chinense is a Tertiary relict tree largely endemic to subtropical China. In this study, we aimed to achieve a better understanding of the phylogeographical pattern of L. chinense and to explore the role of mountains in the conservation of L. chinense genetic resources. Methods Three chloroplast regions (psbJ-petA, rpl32-ndhF, and trnK5’-matK) were sequenced in 40 populations of L. chinense for phylogeographical analyses. Relationships among chloroplast DNA (cpDNA) haplotypes were determined using median-joining networks, and genetic structure was examined by spatial analysis of molecular variance (SAMOVA). The ancestral area of the species was reconstructed using the Bayesian binary Markov Chain Monte Carlo (BBM) method according to its geographic distribution and a maximum parsimony (MP) tree based on Bayesian methods. Results Obvious phylogeographic structure was found in L. chinense. SAMOVA revealed seven groups matching the major landscape features of the L. chinense distribution area. The haplotype network showed three clades distributed in the eastern, southwestern, and northwestern regions. Separate northern and southern refugia were found in the Wu Mountains and Yungui Plateau, with genetic admixture in the Dalou Mountains and Wuling Mountains. BBM revealed a more ancient origin of L. chinense in the eastern region, with a west–east split most likely having occurred during the Mindel glacial stage. Discussion The clear geographical distributions of haplotypes suggested multiple mountainous refugia of L. chinense. The east–west lineage split was most likely a process of gradual genetic isolation and allopatric lineage divergence when the Nanling corridor was frequently occupied by evergreen or coniferous forest during Late Quaternary oscillations. Hotspots of haplotype diversity in the Dalou Mountains and Wuling Mountains likely benefited from gene flow from the Wu Mountains and Yungui Plateau. Collectively, these results indicate that mountain regions should be the main units for conserving and collecting genetic resources of L. chinense and other similar species in subtropical China

    Spin Momentum–Locked Surface States in Metamaterials without Topological Transition

    Get PDF
    The photonic analogy of the quantum spin Hall Effect, that is, a photonic topological insulator (PTI), is of great relevance to science and technology in optics based on the promise of scattering‐free surface states. The challenges in realizing such scattering‐free surface states in PTIs and other types of symmetry‐protected topological phases are the result of the exact symmetry needed for creating a pair of time reversal pseudo‐spin states or special boundary conditions, wherein the exact symmetry imposes strict requirements on materials or boundary conditions. Here, it is experimentally demonstrated that scattering‐free edge states can be created with neither the aforementioned exact symmetry requirements for materials nor the topological transitions. This system is constructed by simply placing together regular homogeneous metamaterials, which are characterized by highly different bianisotropies. Of the particular surface states, backward reflection would be deeply suppressed, provided that the related evanescent tail into the bulk regions vanishes shortly and that the pseudo‐spin is not flipped by the scatterers. This work gives an example of constructing scattering‐free surface states in classical systems without strict symmetry protections and may potentially stimulate various novel applications in the future

    A meta-substrate to enhance the bandwidth of metamaterials

    Get PDF
    We propose the concept of a meta-substrate to broaden the bandwidth of left-handed metamaterials. The meta-substrate, which behaves like an inhomogeneous magnetic substrate, is composed of another kind of magnetic metamaterials like metallic closed rings. When conventional metamaterial rings are printed on this kind of meta-substrate in a proper way, the interaction of the metamaterials units can be greatly enhanced, yielding an increased bandwidth of negative permeability. An equivalent circuit analytical model is used to quantitatively characterize this phenomenon. Both numerical and experimental demonstrations are carried out, showing good agreement with theoretical predictions

    Experimental demonstration of a free space cylindrical cloak without superluminal propagation

    Full text link
    We experimentally demonstrated an alternative approach of invisibility cloaking that can combine technical advantages of all current major cloaking strategies in a unified manner and thus can solve bottlenecks of individual strategies. A broadband cylindrical invisibility cloak in free space is designed based on scattering cancellation (the approach of previous plasmonic cloaking), and implemented with anisotropic metamaterials (a fundamental property of singular-transformation cloaks). Particularly, non-superluminal propagation of electromagnetic waves, a superior advantage of non-Euclidian-transformation cloaks constructed with complex branch cuts, is inherited in this design, and thus is the reason of its relatively broad bandwidth. This demonstration provides the possibility for future practical implementation of cloaking devices at large scales in free space.Comment: 16 pages, 3 figures, accepted by Physical Review Letter

    High Frequency InGaAs MOSFET with Nitride Sidewall Design for Low Power Application

    No full text
    InxGa1-xAs devices have been widely researched for low power high frequency applications due to the outstanding electron mobility and small bandgap of the materials. Regrown source/drain technology is highly appreciated in InGaAs MOSFET, since it is able to reduce the thermal budget induced by ion implantation, as well as reduce the source/drain resistance. However, regrown source/drain technology has problems such as high parasitic capacitance and high electric field at gate edge towards the drain side, which will lead to large drain leakage current and compromise the frequency performance. To alleviate the drain leakage current problem for low power applications and to improve the high frequency performance, a novel Si3N4 sidewall structure was introduced to the InGaAs MOSFET. Device simulation was carried out with different newly proposed sidewall designs. The results showed that both the drain leakage current and the source/drain parasitic capacitance were reduced by applying Si3N4 sidewall together with InP extended layer in InGaAs MOSFET. The simulation results also suggested that the newly created “recessed” sidewall was able to bring about the most frequency favorable characteristic with no current sacrifice

    A Machine Learning Approach for the Forecasting of Computing Resource Requirements in Integrated Circuit Simulation

    No full text
    For the iterative development of the chip, ensuring that the simulation is completed in the shortest time is critical. To meet this demand, the common practice is to reduce simulation time by providing more computing resources. However, this acceleration method has an upper limit. After reaching the upper limit, providing more CPUs can no longer shorten the simulation time, but will instead waste a lot of computing resources. Unfortunately, the recommended values of the existing commercial tools are often higher than this upper limit. To better match this limit, a machine learning optimization algorithm trained with a custom loss function is proposed. Experimental results demonstrate that the proposed algorithm is superior to commercial tools in terms of both accuracy and stability. In addition, the simulations using the resources predicted by the proposed model maintain the same simulation completion time while reducing core hour consumption by approximately 30%

    Connections characteristics analysis in delay tolerant mobile networks

    No full text
    AbstrackIn delay tolerant mobile networks with spars nodes, transferring messages from sources to destinations are accomplished by nodes custody transfer for reliability for the rarity of end-to-end links. Different nodes movement models are adopted in traditional networks, but they are hard to meet the necessity of large-time scale disruption and long-range transmissions. So the hotspots model was designed and proposed to increase the probability of transfer and fasten the speed of bundles spreading. The number of connections and cumulative distribution function of new connections are analyzed with different simulation parameters. We found that the new connections of hotspot model in delay tolerant mobile networks are more important than older ones in successfully delivering bundles6 Halama
    corecore