6,714 research outputs found

    Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory

    Get PDF
    Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer’s disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory

    Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory

    Get PDF
    Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer’s disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory

    Stress-Energy Tensor for the Massless Spin 1/2 Field in Static Black Hole Spacetimes

    Full text link
    The stress-energy tensor for the massless spin 1/2 field is numerically computed outside and on the event horizons of both charged and uncharged static non-rotating black holes, corresponding to the Schwarzschild, Reissner-Nordstrom and extreme Reissner-Nordstr\"om solutions of Einstein's equations. The field is assumed to be in a thermal state at the black hole temperature. Comparison is made between the numerical results and previous analytic approximations for the stress-energy tensor in these spacetimes. For the Schwarzschild (charge zero) solution, it is shown that the stress-energy differs even in sign from the analytic approximation. For the Reissner-Nordstrom and extreme Reissner-Nordstrom solutions, divergences predicted by the analytic approximations are shown not to exist.Comment: 5 pages, 4 figures, additional discussio

    DeWitt-Schwinger Renormalization and Vacuum Polarization in d Dimensions

    Full text link
    Calculation of the vacuum polarization, ,andexpectationvalueofthestresstensor,, and expectation value of the stress tensor, , has seen a recent resurgence, notably for black hole spacetimes. To date, most calculations of this type have been done only in four dimensions. Extending these calculations to dd dimensions includes dd-dimensional renormalization. Typically, the renormalizing terms are found from Christensen's covariant point splitting method for the DeWitt-Schwinger expansion. However, some manipulation is required to put the correct terms into a form that is compatible with problems of the vacuum polarization type. Here, after a review of the current state of affairs for and and calculations and a thorough introduction to the method of calculating ,acompactexpressionfortheDeWittSchwingerrenormalizationtermssuitableforuseinevendimensionalspacetimesisderived.Thisformulashouldbeusefulforcalculationsof, a compact expression for the DeWitt-Schwinger renormalization terms suitable for use in even-dimensional spacetimes is derived. This formula should be useful for calculations of and inevendimensions,andtherenormalizationtermsareshownexplicitlyforfourandsixdimensions.Furthermore,useofthefinitetermsoftheDeWittSchwingerexpansionasanapproximationto in even dimensions, and the renormalization terms are shown explicitly for four and six dimensions. Furthermore, use of the finite terms of the DeWitt-Schwinger expansion as an approximation to for certain spacetimes is discussed, with application to four and five dimensions.Comment: 21 pages, 2 tables, 3 figures. References added, rewritten to clarify some points, corrections performed, our claim in the first version that there is an error in Anderson's calculations is incorrec

    Uso de modelos de simulação sócio-bio-econômico integrado como ferramenta para o desenvolvimento agrário na região sudoeste do Rio Grande Sul.

    Get PDF
    Suporte tecnológico tem sido oferecido aos produtores com a finalidade de aumentar a eficiência produtiva e fornecer subsídios para as suas tomadas de decisões; entretanto, os métodos tradicionais de pesquisa e extensão estão sendo cada vez mais questionados, principalmente quanto ao custo e tempo necessário para oferecer soluções aos problemas enfrentados pelos produtores.bitstream/item/109814/1/USO-DE-MODELOS-DE-SIMULACAO.pd

    Replicate Wolter-I x-ray mirrors

    Get PDF
    Cylindrical (hyperbolic - parabolic Wolter I) mirrors have been electroformed from nickel over an electroless nickel-phosphorous (NiP) plated aluminum mandrel in support of the NASA AXAF-S x-ray spectrometer program. The electroless nickel was diamond turned and polished to achieve a surface finish of 10 angstroms rms or better. Gold was then plated on the nickel alloy after an electrochemical passivation step. Next a heavy layer of pure nickel was plated one millimeter thick with controlled stress at zero using a commercial PID program to form the actual mirror. This shell was removed from the NiP alloy coated mandrel by cryogenic cooling and contraction of the aluminum to release the mirror. It is required that the gold not adhere well to the NiP but all other plated coatings must exhibit good adherence. Four mirrors were fabricated from two mandrels prepared by this method. The area of each part is 0.7 square meters (7.5 square feet)

    Magnetotransport near a quantum critical point in a simple metal

    Full text link
    We use geometric considerations to study transport properties, such as the conductivity and Hall coefficient, near the onset of a nesting-driven spin density wave in a simple metal. In particular, motivated by recent experiments on vanadium-doped chromium, we study the variation of transport coefficients with the onset of magnetism within a mean-field treatment of a model that contains nearly nested electron and hole Fermi surfaces. We show that most transport coefficients display a leading dependence that is linear in the energy gap. The coefficient of the linear term, though, can be small. In particular, we find that the Hall conductivity σxy\sigma_{xy} is essentially unchanged, due to electron-hole compensation, as the system goes through the quantum critical point. This conclusion extends a similar observation we made earlier for the case of completely flat Fermi surfaces to the immediate vicinity of the quantum critical point where nesting is present but not perfect.Comment: 11 pages revtex, 4 figure

    New Magnetic Excitations in the Spin-Density-Wave of Chromium

    Full text link
    Low-energy magnetic excitations of chromium have been reinvestigated with a single-Q crystal using neutron scattering technique. In the transverse spin-density-wave phase a new type of well-defined magnetic excitation is found around (0,0,1) with a weak dispersion perpendicular to the wavevector of the incommensurate structure. The magnetic excitation has an energy gap of E ~ 4 meV and at (0,0,1) exactly corresponds to the Fincher mode previously studied only along the incommensurate wavevector.Comment: 4 pages, 4 figure

    Spin and charge excitations in incommensurate spin density waves

    Full text link
    Collective excitations both for spin- and charge-channels are investigated in incommensurate spin density wave (or stripe) states on two-dimensional Hubbard model. By random phase approximation, the dynamical susceptibility \chi(q,\omega) is calculated for full range of (q,\omega) with including all higher harmonics components. An intricate landscape of the spectra in \chi(q,\omega) is obtained. We discuss the anisotropy of the dispersion cones for spin wave excitations, and for the phason excitation related to the motion of the stripe line. Inelastic neutron experiments on Cr and its alloys and stripe states of underdoped cuprates are proposed

    Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets

    Full text link
    Two centuries of research on phase transitions have repeatedly highlighted the importance of critical fluctuations that abound in the vicinity of a critical point. They are at the origin of scaling laws obeyed by thermodynamic observables close to second-order phase transitions resulting in the concept of universality classes, that is of paramount importance for the study of organizational principles of matter. Strikingly, in case such soft fluctuations are too abundant they may alter the nature of the phase transition profoundly; the system might evade the critical state altogether by undergoing a discontinuous first-order transition into the ordered phase. Fluctuation-induced first-order transitions have been discussed broadly and are germane for superconductors, liquid crystals, or phase transitions in the early universe, but clear experimental confirmations remain scarce. Our results from neutron scattering and thermodynamics on the model Dzyaloshinskii-Moriya (DM) helimagnet (HM) MnSi show that such a fluctuation-induced first-order transition is realized between its paramagnetic and HM state with remarkable agreement between experiment and a theory put forward by Brazovskii. While our study clarifies the nature of the HM phase transition in MnSi that has puzzled scientists for several decades, more importantly, our conclusions entirely based on symmetry arguments are also relevant for other DM-HMs with only weak cubic magnetic anisotropies. This is in particular noteworthy in light of a wide range of recent discoveries that show that DM helimagnetism is at the heart of problems such as topological magnetic order, multiferroics, and spintronics.Comment: 19 pages, 9 figures, 2 table
    corecore