7 research outputs found

    Expression plasticity of Phlebotomus papatasi salivary gland genes in distinct ecotopes through the sand fly season

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sand fly saliva can drive the outcome of <it>Leishmania </it>infection in animal models, and salivary components have been postulated as vaccine candidates against leishmaniasis. In the sand fly <it>Phlebotomus papatasi</it>, natural sugar-sources modulate the activity of proteins involved in meal digestion, and possibly influence vectorial capacity. However, only a handful of studies have assessed the variability of salivary components in sand flies, focusing on the effects of environmental factors in natural habitats. In order to better understand such interactions, we compared the expression profiles of nine <it>P. papatasi </it>salivary gland genes of specimens inhabiting different ecological habitats in Egypt and Jordan and throughout the sand fly season in each habitat.</p> <p>Results</p> <p>The majority of investigated genes were up-regulated in specimens from Swaymeh late in the season, when the availability of sugar sources is reduced due to water deprivation. On the other hand, these genes were not up-regulated in specimens collected from Aswan, an irrigated area less susceptible to drought effects.</p> <p>Conclusion</p> <p>Expression plasticity of genes involved with vectorial capacity in disease vectors may play an important epidemiological role in the establishment of diseases in natural habitats.</p

    Response of phlebotomine sand flies to light-emitting diode-modified light traps in southern Egypt

    Get PDF
    Centers For Disease Control and Prevention (CDC) light traps were modified for use with light-emitting diodes (LED) and compared against a control trap (incandescent light) to determine the effectiveness of blue, green, and red lights against standard incandescent light routinely used for sand fly surveillance. Light traps were baited with dry ice and rotated through a 4 x 4 Latin square design during May, June, and July, 2006. Trapping over 12 trap nights yielded a total of 2,298 sand flies in the village of Bahrif, 6 km north of Aswan on the east bank of the Nile River in southern Egypt. Phlebotomus papatasi comprised 94.4% of trap collections with five other species collected in small numbers. Over half (55.13%) of all sand flies were collected from red light traps and significantly more sand flies (P \u3c 0.05) were collected from red light traps than from blue, green, or incandescent light traps. Red light traps collected more than twice as many sand flies as control (incandescent) traps and \u3e 4 x more than blue and green light traps. Results indicate that LED red light is a more effective substitute for standard incandescent light when surveying in areas where P. papatasi is the predominant sand fly species. Each LED uses approximately 15% of the energy that a standard CDC lamp consumes, extending battery life and effective operating time of traps. Our prototype LED-modified traps performed well in this hot, arid environment with no trap failures

    Discovery Of Diurnal Resting Sites Of Phlebotomine Sand Flies In A Village In Southern Egypt

    Get PDF
    In an attempt to find diurnal resting sites of adult phlebotomine sand flies, potential phlebotomine adult habitats were aspirated in the village of Bahrif in Aswan, Egypt. During this survey, sand flies were aspirated from low (30–45 cm high) irregular piles of mud bricks found under high date palm canopies between the village and the Nile River. There were 5 ♂♂and 7 ♀♀ of Phlebotomus papatasi and 3♂♂ of Sergentomyia schwetzi. Six of the 7 aspirated females were engorged with blood. A total of 78 sand flies was captured on 3 glue boards placed overnight on the ground next to the mud bricks. Attempts to aspirate sand flies from adjacent walls and plants were unsuccessful. The identification of diurnal resting sites in less structured habitats may ultimately lead to more effective adult sand fly control

    Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes

    No full text
    Abstract Background Phlebotomus papatasi sand flies are major vectors of Leishmania major and phlebovirus infection in North Africa and across the Middle East to the Indian subcontinent. Population genetics is a valuable tool in understanding the level of genetic variability present in vector populations, vector competence, and the development of novel control strategies. This study investigated the genetic differentiation between P. papatasi populations in Egypt and Jordan that inhabit distinct ecotopes and compared this structure to P. papatasi populations from a broader geographical range. Methods A 461 base pair (bp) fragment from the mtDNA cytochrome b (cyt b) gene was PCR amplified and sequenced from 116 individual female sand flies from Aswan and North Sinai, Egypt, as well as Swaimeh and Malka, Jordan. Haplotypes were identified and used to generate a median-joining network, F ST values and isolation-by-distance were also evaluated. Additional sand fly individuals from Afghanistan, Iran, Israel, Jordan, Libya, Tunisia and Turkey were included as well as previously published haplotypes to provide a geographically broad genetic variation analysis. Results Thirteen haplotypes displaying nine variant sites were identified from P. papatasi collected in Egypt and Jordan. No private haplotypes were identified from samples in North Sinai, Egypt, two were observed in Aswan, Egypt, four from Swaimeh, Jordan and two in Malka, Jordan. The Jordan populations clustered separately from the Egypt populations and produced more private haplotypes than those from Egypt. Pairwise F ST values fall in the range 0.024–0.648. Conclusion The clustering patterns and pairwise F ST values indicate a strong differentiation between Egyptian and Jordanian populations, although this population structure is not due to isolation-by-distance. Other factors, such as environmental influences and the genetic variability in the circulating Le. major parasites, could possibly contribute to this heterogeneity. The present study aligns with previous reports in that pockets of genetic differentiation exists between populations of this widely dispersed species but, overall, the species remains relatively homogeneous

    Phlebotomus papatasi SP15: mRNA expression variability and amino acid sequence polymorphisms of field populations

    No full text
    Abstract Background The Phlebotomus papatasi salivary protein PpSP15 was shown to protect mice against Leishmania major, suggesting that incorporation of salivary molecules in multi-component vaccines may be a viable strategy for anti-Leishmania vaccines. Methods Here, we investigated PpSP15 predicted amino acid sequence variability and mRNA profile of P. papatasi field populations from the Middle East. In addition, predicted MHC class II T-cell epitopes were obtained and compared to areas of amino acid sequence variability within the secreted protein. Results The analysis of PpSP15 expression from field populations revealed significant intra- and interpopulation variation.. In spite of the variability detected for P. papatasi populations, common epitopes for MHC class II binding are still present and may potentially be used to boost the response against Le. major infections. Conclusions Conserved epitopes of PpSP15 could potentially be used in the development of a salivary gland antigen-based vaccine
    corecore