40 research outputs found

    Primary plant nutrients modulate the reactive oxygen species metabolism and mitigate the impact of cold stress in overseeded perennial ryegrass

    Get PDF
    Overseeded perennial ryegrass (Lolium perenne L.) turf on dormant bermudagrass (Cynodon dactylon Pers. L) in transitional climatic zones (TCZ) experience a severe reduction in its growth due to cold stress. Primary plant nutrients play an important role in the cold stress tolerance of plants. To better understand the cold stress tolerance of overseeded perennial ryegrass under TCZ, a three-factor and five-level central composite rotatable design (CCRD) with a regression model was used to study the interactive effects of nitrogen (N), phosphorus (P), and potassium (K) fertilization on lipid peroxidation, electrolyte leakage, reactive oxygen species (ROS) production, and their detoxification by the photosynthetic pigments, enzymatic and non-enzymatic antioxidants. The study demonstrated substantial effects of N, P, and K fertilization on ROS production and their detoxification through enzymatic and non-enzymatic pathways in overseeded perennial ryegrass under cold stress. Our results demonstrated that the cold stress significantly enhanced malondialdehyde, electrolyte leakage, and hydrogen peroxide contents, while simultaneously decreasing ROS-scavenging enzymes, antioxidants, and photosynthetic pigments in overseeded perennial ryegrass. However, N, P, and K application mitigated cold stress-provoked adversities by enhancing soluble protein, superoxide dismutase, peroxide dismutase, catalase, and proline contents as compared to the control conditions. Moreover, N, P, and, K application enhanced chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in overseeded perennial ryegrass under cold stress as compared to the control treatments. Collectively, this 2−years study indicated that N, P, and K fertilization mitigated cold stress by activating enzymatic and non-enzymatic antioxidants defense systems, thereby concluding that efficient nutrient management is the key to enhanced cold stress tolerance of overseeded perennial ryegrass in a transitional climate. These findings revealed that turfgrass management will not only rely on breeding new varieties but also on the development of nutrient management strategies for coping cold stress

    AVO Modelling Considering Various Caprock and Reservoir Scenarios for Potential CO2 Storage in Smeaheie Area, Northern North Sea

    Get PDF
    We have performed a comparative study of undrained triaxial testing with five different laboratories, to explore the reproducibility of test results. Opalinus Clay was sourced as testing material from a borehole at the Mont Terri URL. Cores were vacuum-sealed, and resin impregnated immediately after recovery. Systematic determination of basic properties such as water content, grain density and bulk mineralogy of specimens after testing assisted in diagnostic test evaluation. A detailed testing protocol was requested to avoid specimen damage during initial loading («swelling») and to verify specimen saturation. A balanced pore fluid was used for testing, and a consolidation phase was performed to reach specific target effective stress levels prior to the shear phase. One laboratory deviated from these protocols, as it did not use an external pore fluid. Instead, specimens were brought to variable saturation levels in a desiccator prior to assembling them into the rig. For specimens with almost identical basic properties, the test results were indeed found to be in very good agreement, despite the different procedures applied. Differences in test results can be attributed to material heterogeneity. The study provides compelling evidence that robust triaxial testing can be achieved with shales.publishedVersio

    Comparison of Sealing Properties of Amundsen and Drake Formations for Potential CO2 Storage in North Sea

    Get PDF
    Seal evaluation for CO2 storage is different from that of a hydrocarbon trap since the oil or gas accumulation itself validates the cap-rock integrity. However, in case of subsurface CO2 storage a careful investigation is required to avoid any risk of potential seal failure. The Johansen Formation of Early Jurassic age in and around the Troll field is a potential CO2 storage reservoir in the northern North Sea. It is enveloped by Amundsen mudstone, whereas in the southeast where the Amundsen cap pinches out, the Drake mudstone Formation directly overlies the Johansen Formation. We evaluated wireline log data from 24 exploration wells using petrophysical analysis and rock physics diagnostics to obtain present day depth, thickness, temperature, volume of clay, physical and elastic properties to evaluate the seal integrity of the Amundsen and Drake Formations. The sealing properties of both the formations were found to be within acceptable range, with minor presence of brittle zones at deeper levels within the Drake Formation containing low volume of shale. These findings will help understanding the seal integrity of Amundsen and Drake Formations as cap-rocks above the Johansen Sandstone being a potential CO2 storage reservoir.publishedVersio

    Organic-rich shale caprock properties of potential CO2 storage sites in the northern North Sea, offshore Norway

    Get PDF
    Assessment of the geomechanical properties of organic-rich shale caprocks is critical for a successful CO2 storage into a saline aquifer. In this study, we investigated the geochemical properties of the organic-rich shale caprocks of the Draupne and Heather formations, overlying the potential sandstone reservoirs of Sognefjord, Fensfjord, and Krossfjord formations in the northern North Sea, offshore Norway. The caprock’s depositional variations within the sub-basins are established by analyzing the gamma-ray shape and stacking patterns. The effect due to differences in depositional environments, on the caprock compaction behavior is investigated by integrating petrographical analysis of core and cutting samples from 3 wells and by rock physical analysis of wireline log data from 27 exploration wells. Three rock physics templates are used where the wireline log data are interpreted using the published background trends. The effect of kerogen type, maturation level, and deposition environment on caprock properties within the study area are also evaluated. Moreover, the caprock property, such as brittleness, is estimated by using four mineralogy and elastic property-based, empirical relations, which is a quantitative measure of caprock property with respect to changes in stress-state. Finally, the seismic inversion method is assessed for the possibility of extracting caprock properties from surface seismic data. Regardless of compaction processes, the results indicate that the Heather Formation is mechanically stronger than the Draupne Formation. However, both formations appear to be ductile in nature. The depositional environments control the mineralogical composition and fabric of the Draupne and Heather formations, which influence the caprock properties significantly. Results also show that the effect of TOC on caprock properties is insignificant in the study area. The brittleness of the organic-rich shale caprocks in the study area follows a different trend compared to the published trends. We also observed an excellent correlation between the log-derived elastic properties and geomechanical parameters. Still, it is difficult to assess the caprock elastic properties from seismic due to the overlap of data clusters. The evaluation of caprock geomechanical behaviors is challenging as these properties are site-specific and also influenced by other factors such as exhumation, in-situ stress conditions, the existence of natural fractures, and their orientations.publishedVersio
    corecore