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Summary 
 
Seal evaluation for CO2 storage is different from that of a hydrocarbon trap since the oil or gas accumulation itself 
validates the cap-rock integrity. However, in case of subsurface CO2 storage a careful investigation is required to 
avoid any risk of potential seal failure. The Johansen Formation of Early Jurassic age in and around the Troll field 
is a potential CO2 storage reservoir in the northern North Sea. It is enveloped by Amundsen mudstone, whereas 
in the southeast where the Amundsen cap pinches out, the Drake mudstone Formation directly overlies the 
Johansen Formation. We evaluated wireline log data from 24 exploration wells using petrophysical analysis and 
rock physics diagnostics to obtain present day depth, thickness, temperature, volume of clay, physical and elastic 
properties to evaluate the seal integrity of the Amundsen and Drake Formations. The sealing properties of both the 
formations were found to be within acceptable range, with minor presence of brittle zones at deeper levels within 
the Drake Formation containing low volume of shale. These findings will help understanding the seal integrity of 
Amundsen and Drake Formations as cap-rocks above the Johansen Sandstone being a potential CO2 storage 
reservoir. 
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Introduction 

 

This study deals with the petrophysics and rock physics evaluation of the early Jurassic Amundsen and 

Drake Formations for their sealing potential above the Johansen Formation as a possible CO2 storage 

reservoir (Fawad and Mondol, 2018) in the northern North Sea. The Norwegian government have been 

working on feasibility of large-scale (Gt storage potential) CO2 storage sites in various parts of the 

Norwegian Continental Shelf. The area near and around Troll field is among one of those. Troll field is 

situated approximately 80 km WNW of Bergen in Norway (Figure 1a). The Johansen Formation 

sandstone reservoir is a saline aquifer with no hydrocarbon reported so far in this area.  

 

The study area covers the Troll field in the south, extending towards north covering the southern part of 

the Peon field (Figure 1a). The potential reservoir sandstones of Johansen Formation are prograding and 

retrograding deltaic in nature deposited during a lowstand (Sundal et al., 2013). The Amundsen 

Formation mudstones, which enclose the Johansen Formation consist of light to dark grey, non-

calcareous siltstones and shales, in part carbonaceous and pyritic. The Drake Formation overlies the 

Cook Formation sandstone in most of the area, however it directly overlies the Johansen Formation 

where the Amundsen mudstone pinches out in the southeast (Figure 2c). The Drake Formation consists 

of medium grey, slightly sandy, calcareous, and silty claystone. The upper part is dark grey to black, 

fissile, micaceous shale containing calcareous nodules. Some fine to coarse sandstones are present in 

the formation within the study area (Figure 1b, NPD, 2019).  

 
 

Figure 1 The study area lies within the blue rectangle. Troll Field is in the southeastern corner, whereas 

the Peon discovery is situated in the NNW. The available wells (a total 24) used in the study were drilled 

in and around the Troll field (a). A succession shows the stratigraphic positions of the Amundsen, Drake 

and Johansen Formations within the area of study (Sundal et al., 2013) (b).  

 

The depth of Amundsen Formation from the available wells ranged from 1969 to 4157 m (TVDSS), 

whereas the Drake Formation depth ranged from 1810 to 3790 m (TVDSS). The CO2 storage is normally 

stretched to a large area, however, the borehole data represents only the structural highs. Therefore, 

usage of seismic data is planned to predict the elastic properties in next phase. This paper represents the 

sealing properties of the Amundsen and Drake Formations and the factors that could influence 

improving or are detrimental to the seal integrity using the well log data. 
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Methods 

 

From the available 24 wells, three 

lithostratigraphic/structural correlation 

profiles (Figures 2a&b) were made using 

formation tops from the Norwegian 

Petroleum Directorate Fact Pages (NPD, 

2019). The volume of clay (VCL) were 

obtained from the petrophysics analysis 

using both gamma ray employing the “old 

rock” method (Larionov, 1969), and the 

combination of density (RhoB)/ neutron 

porosity (NPHI) logs acquired in 21 wells. 

Temperature at each zone was 

interpolated from the bottom hole 

temperature (BHT) data. In addition, a 

rock physics analysis of seven wells was 

carried out to investigate the elastic 

properties of the Amundsen and Drake 

Formations. The wells for rock physics 

analysis were selected to obtain 

information at various depths (Figure 2a). 

Maps were plotted based on thickness 

obtained from correlations (Figures 

2c&d), and parameters obtained from the 

petrophysics analysis. Only one well i.e. 

31-1/1 contained an acquired shear wave 

velocity (Vs) log. Greenberg & Castagna 

(1992) method was employed to compute 

synthetic Vs logs using the neutron-

density derived volume of clay (VCLND) 

input. Petrophysics and rock physics 

analyses were performed using Interactive 

Petrophysics (IP™) software, whereas the 

cross-section and map generation were 

carried out employing Petrel™. 

 

Results and Discussion 

 

From the petrophysics analyses, it was 

evident that the volume of clay showed a 

weak positive correlation with depth. As  

 
 

Figure 2 Locations of the cross sections marked by pink, 

dark blue and green lines on the map with 7 wells selected 

for the rock physics analysis indicated by dark blue 

arrows (a). The Structural cross section along X-sections 

1, 2 & 3 correlating top and bottom of the Johansen, 

Amundsen, Cook and Drake Formations. The strata is 

getting deeper towards north and northwest. (b). Depth 

thickness map show Amundsen Formation pinches out in 

the northwest and southeast, with depocenter lying 

eastwards in middle of the area (max thickness 

~100m)(c), whereas the Drake Formation pinches out 

towards west with  depocenter situated in the south (max 

thickness ~140m), the formation thickness also increases 

in the north towards deeper levels (d). 

expected, the bottom hole temperature (BHT) increased with depth while Amundsen Formation 

experienced a maximum temperature of 140°C, whereas the Drake Formation had undergone a 

maximum temperature of 136°C. Using the template proposed by Perez and Marfurt (2014), we plot 

Poisson’s ratio () and Young’s modulus (E) corresponding to the Amundsen and Drake Formations 

data from the 7 selected wells (Figure 3). The data spread for both the Amundsen and Drake Formations 

is similar, with slightly more data points from deeper levels falling within the brittle zone in case of 

Drake Formation (Figure 3a), the data points experienced high temperature (Figure 3b), and contain low 

volume of shale (Figure 3c). Majority of data, both from Amundsen and Drake Formations plot within 

less ductile to less brittle zone depicting a low risk of fracturing.  

 

Perez and Marfurt (2014) demonstrated that LambdaRho–MuRho rock physics templates had been very 

useful for lithology characterisation and correlating brittleness to rock properties. Using this template 

for the three most common minerals in the area of study i.e. quartz, clay and calcite as a reference 
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Figure 3 Poisson’s ratio () versus Young’s modulus (E) crossplot with Drake Formation data from 7 

selected wells colour-coded with depth (a), temperature (b), and volume of clay (c). Same crossplot with 

Amundsen Formation data from the said wells colour-coded with depth (d), temperature (e), and volume 

of clay (f).   

 

Figure 4 The LambdaRho – MuRho crossplot with Drake Formation data from 7 selected wells colour-

coded with depth (a), temperature (b), and volume of clay (c). Same crossplot with Amundsen Formation 

data from the said wells colour-coded with depth (d), temperature (e), and volume of clay (f). 

(Perez and Marfurt, 2014), the LambdaRho–MuRho well log results were crossplotted corresponding 

to the Amundsen and Drake Formations from the 7 selected wells (Figure 4). The plot show a wide 

LambdaRho spread in case of Drake Formation compared to that of Amundsen Formation (Figure 

4a&d). Data from the deeper levels show high MuRho values, the brittleness seems to be increasing 
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with zones experiencing higher temperature (Figure 4b&e), however as the volume of shale (VSHND) 

increase even the points from deeper zones fall away from brittle zone within the less ductile zone 

(Figure 4c&f). Deep and quartz rich zones within the Drake Formation plot within the brittle zone 

(Figure 4a&c). Generally, data from both the Amundsen and Drake Formations fall within less ductile 

to less brittle zone reflecting a low risk of fracturing.  

 

The amount of strain a material can withstand prior to brittle failure depends on its ductility (Ingram 

and Urai, 1999). Ductility is a function of many factors i.e. lithology, confining pressure, pore pressure, 

temperature, and differential stress/strain ratio (Davis and Reynolds, 1996). In sedimentary basins, the 

higher confining pressure is attained by increasing burial depth. Furthermore, the temperatures 

approximately above 60-80°C lead to the onset and progress of chemical compaction processes resulting 

in stiffening and embrittlement of the rock. The rock physics analyses of the Amundsen and Drake 

Formations confirmed that the increase in brittleness owed to the increase of quartz content, depth and 

temperature. In mudstones primarily saturated with brine, the computed S-wave velocity normally 

works within acceptable limits. Though both the formations lack a significant amount of organic rich 

matter, however, the usage of synthetic S-wave velocity (Vs) might have dampened the organic content 

effect, in addition to the influence of calcite/dolomite.  

 

Conclusions 

 

Within the study area the Amundsen and Drake Formation brittleness increase with depth and 

temperature, whereas decrease with increase in volume of clay. In the wells analysed, some quartz rich 

deeper levels within the Drake Formation fall within the brittle zone, however, the majority Amundsen 

and Drake Formation data plot in between less ductile to less brittle zone showing low possibility of 

fracturing. The usage of synthetic Vs has limitations, as the influences of organic rich matter and/or 

carbonates are dampened in the analyses. 
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