7 research outputs found

    Pluripotent Core in Bovine Embryos: A Review

    Get PDF
    Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.Fil: Aguila, Luis. Universidad de La Frontera; ChileFil: Osycka Salut, Claudia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Treulen, Favian. Universidad de La Frontera; ChileFil: Felmer, Ricardo. Universidad de La Frontera; Chil

    Oocyte Selection for In Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence

    No full text
    The efficiency of producing embryos using in vitro technologies in livestock species rarely exceeds the 30–40% threshold, indicating that the proportion of oocytes that fail to develop after in vitro fertilization and culture is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting blastocyst yield, the precise identification of noninvasive cellular or molecular markers that predict oocyte competence is of major interest to research and practical applications. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, large number of surrounding cumulus cells, slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better competence. In addition, the combination of oocyte and zygote selection via brilliant cresyl blue (BCB) test, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in-vitro-derived technologies in livestock species

    Cryopreservation of stallion semen: Effect of adding antioxidants to the freezing medium on sperm physiology

    No full text
    Cryopreservation of stallion semen has not reached the level of efficiency and positive results described in other species. This is mainly due to the greater sensitivity of stallion sperm to the freezing process, showing higher rates of oxidative stress and plasma membrane damage, which trigger the activation of several cell damage pathways that ultimately culminate in DNA fragmentation and cell death. Therefore, finding molecules that improve the efficiency of this technique in stallion by preventing oxidative stress and cell damage is required. Thus, the aim of the present study was to evaluate the effect of adding three antioxidants (MnTBAP, NAC and FeTPPS) to the freezing medium on the quality and functional parameters of stallion sperm. Semen samples from three stallions frozen with the antioxidants were evaluated in two conditions: (a) adding the antioxidants before freezing, and (b) before and after freezing. Plasma membrane integrity, mitochondrial membrane potential, lipid peroxidation, intracellular ROS levels, membrane lipid disorder, DNA damage, sperm motility and binding to the zona pellucida were assessed. The results showed that MnTBAP was the antioxidant treatment that best controlled the oxidative stress process and post-thaw cell damage, showing higher plasma membrane integrity, mitochondrial membrane potential, sperm motility, number of spermatozoa bound to the zona pellucida of bovine oocytes and lower lipid disorder. Additionally, it was determined that a second post-thaw application of antioxidants is detrimental since induced higher cell damage and lower sperm motility, without showing any beneficial effect on the spermatozoa

    Effect of human tubal fluid medium and hyperactivation inducers on stallion sperm capacitation and hyperactivation

    No full text
    Contents Conventional in vitro fertilization has not yet been implemented in the equine species. One of the main reasons has been the inability to develop a culture medium and incubation conditions supporting high levels of stallion sperm capacitation and hyperactivation in vitro. Although different culture media have been used for this purpose, human tubal fluid (HTF) medium, widely used in the manipulation of human and mice gametes, has not been reported so far in stallion sperm culture. The first part of this study aimed to compare HTF and Whitten's media on different stallion sperm quality and capacitation variables. Additionally, the effect of procaine, aminopyridine and caffeine in both media was evaluated on sperm motility parameters at different incubation times. Integrity and destabilization of the plasma membrane were evaluated by merocyanine 540/SYTOX Green (MC540), mitochondrial membrane potential (m) using tetramethylrhodamine methyl ester perchlorate (TMRM), acrosome membrane integrity by PNA/FITC and tyrosine phosphorylation by P-tyrosine mouse mAb conjugated to Alexa Fluor (R) by flow cytometry. Motility parameters were evaluated using the integrated semen analysis system (ISAS (R)). We found no differences between Whitten's and HTF media and incubation time in terms of sperm viability, uninduced acrosome membrane damage or mitochondrial membrane potential at 30- and 120-min incubation. Membrane fluidity (MC540) increased in both media at 30- and 120-min incubation compared to noncapacitating conditions. Similarly, tyrosine phosphorylation increased in both media in capacitating conditions at 2- and 4-hr incubation compared to noncapacitating conditions. Although procaine showed the best result in terms of sperm hyperactivated motility in both media, aminopyridine also showed parameters consistent with the hyperactivation including an increase in curvilinear velocity and decrease in straightness. In conclusion, HTF medium and aminopyridine equally support capacitation-related parameters in stallion sperm

    Effect of incubation temperature after devitrification on quality parameters in human sperm cells

    No full text
    Sperm cryopreservation is common in assisted reproduction laboratories, providing a therapeutic option for several clinical conditions. This process has been optimized; however, the effect of post-thaw incubation temperature has been poorly studied. This work analyzed the effect of incubation temperature after devitrification on human sperm quality. Spermatozoa from normozoospermic donors were cryopreserved by vitrification. After devitrification, the spermatozoa were separated into two aliquots: (i) incubated at room temperature (RT, 22-25 degrees C) and (ii) incubated at 37 degrees C. Reactive oxygen species (ROS), viability, mitochondrial membrane potential (AWM), phosphatidylserine externalization and motility were analyzed immediately after devitrification (control) and after 2, 4 and 6 h. Spermatozoa incubated at RT showed a conserved viability and Delta Psi M compared to the control, while the incubation at 37 degrees C promoted a decrease in these parameters. The ROS levels were increased at both incubation conditions. The progressive motility was decreased in all experimental groups and the decrease was more pronounced under incubation at RT. No increase in phosphatidylserine externalization was observed. In conclusion, prior to use in assisted reproduction procedures, devitrified spermatozoa at RT conserve a better viability and Delta Psi M than at 37 degrees C

    Nitrosative stress in human spermatozoa causes cell death characterized by induction of mitochondrial permeability transition-driven necrosis

    Get PDF
    Peroxynitrite is a highly reactive nitrogen species and a potent inducer of apoptosis and necrosis in somatic cells. Peroxynitrite-induced nitrosative stress has emerged as a major cause of impaired sperm function; however, its ability to trigger cell death has not been described in human spermatozoa. The objective here was to characterize biochemical and morphological features of cell death induced by peroxynitrite-mediated nitrosative stress in human spermatozoa. For this, spermatozoa were incubated with and without (untreated control) 3-morpholinosydnonimine (SIN-1), in order to generate peroxynitrite. Sperm viability, mitochondrial permeability transition (MPT), externalization of phosphatidylserine, DNA oxidation and fragmentation, caspase activation, tyrosine nitration, and sperm ultrastructure were analyzed. The results showed that at 24 h of incubation with SIN-1, the sperm viability was significantly reduced compared to untreated control (P<0.001). Furthermore, the MPT was induced (P<0.01) and increment in DNA oxidation (P<0.01), DNA fragmentation (P<0.01), tyrosine nitration (P<0.0001) and ultrastructural damage were observed when compared to untreated control. Caspase activation was not evidenced, and although phosphatidylserine externalization increased compared to untreated control (P<0.001), this process was observed in <10% of the cells and the gradual loss of viability was not characterized by an important increase in this parameter. In conclusion, peroxynitrite-mediated nitrosative stress induces the regulated variant of cell death known as MPT-driven necrosis in human spermatozoa. This study provides a new insight into the pathophysiology of nitrosative stress in human spermatozoa and opens up a new focus for developing specific therapeutic strategies to better preserve sperm viability or to avoid cell death
    corecore