19 research outputs found

    Effects of disease modifying therapies on brain and grey matter atrophy in relapsing remitting multiple sclerosis

    No full text
    Abstract Background Progressive brain atrophy is a major feature of multiple sclerosis (MS) pathology and is actually considered a major determinant of the progressive accumulation of physical and cognitive disability in MS patients. Although brain atrophy may have different pathological substrates, several lines of evidence suggest that in disease modifying drug (DMD)-treated MS patients, the higher is the anti-inflammatory effect of the DMD the lower is the progression of brain volume loss, grey matter atrophy and the accumulation of disability. Areas covered Magnetic resonance imaging (MRI)-based measurements of inflammation (focal white matter and grey matter lesions) and neurodegeneration (decrease in brain volume, cortical and deep grey matter atrophy) are currently included among the primary or secondary end-points of Phase II and III randomized clinical trials (RCT). This review summarizes literature data on the effects of DMDs on either whole brain or grey matter atrophy emerged from RCT and from post-marketing studies. Commentary Taken all together, literature data show that DMDs are capable to reduce significantly brain inflammation and, although with different degrees of effectiveness, to slow down global brain and/or grey matter atrophy progression. Moreover, the comparison between early and delayed treatments clearly points out that the most relevant effects on brain and grey matter atrophy are observed when DMDs are initiated in the very early disease phases

    The parallel analysis of phase sensitive inversion recovery (PSIR) and double inversion recovery (DIR) images significantly improves the detection of cortical lesions in multiple sclerosis (MS) since clinical onset

    No full text
    Double inversion recovery (DIR) detects only a minority (<20%) of cortical lesions (CL) in multiple sclerosis (MS). Phase-sensitive inversion recovery (PSIR) was suggested to be substantially superior to DIR in the detection of cortical lesions (CL). These two sequences might be complementary.To analyze CL frequency and type in MS patients having different disease duration and disability, including patients at clinical onset, and to discern more correctly the artifacts, by combining DIR and PSIR images.40 patients were enrolled in the study: 10 clinically isolated syndrome/early relapsing remitting MS (CIS/eRRMS), 24 relapsing remitting MS (RRMS), 6 secondary progressive MS (SPMS). DIR and PSIR images were jointly used to classify lesions as purely intracortical (IC), leukocortical (LC) and juxtacortical (JC).PSIR disclosed CL in 100% of the patients and was capable of identifying more than four times lesions (455.5%, p<0.00001), especially IC (mean numbers: 36.5 in CIS/eRRMS, 45.0 in RRMS and 52.3 in SPMS) and LC (mean numbers: 10.9 in CIS/eRRMS, 20.1 in RRMS and 25.3 in SPMS), compared to DIR (p<0.00001). CL number was significantly higher in SPMS compared to RRMS (p<0.0001). Artifacts were more accurately identified by comparing the two sequences.Our study confirms the higher ability of PSIR in disclosing and classifying CL. The presence of CL in all CIS patients further points out the relevance of cortical pathology in MS. Whether the parallel analysis of DIR and PSIR images may be useful for diagnostic purposes, especially when a diagnosis of MS is suspected but not confirmed by routine MRI, needs to be evaluated in larger patient series. The analysis of the cortex by DIR and PSIR may also allow a better stratification of the patients for prognostic and counseling purposes, as well as for their inclusion in clinical studies

    Disease-Modifying Drugs Reduce Cortical Lesion Accumulation and Atrophy Progression in Relapsing-Remitting Multiple Sclerosis: Results from a 48-Month Extension Study

    Get PDF
    Cortical lesions (CLs) and atrophy are pivotal in multiple sclerosis (MS) pathology. This study determined the effect of disease modifying drugs (DMDs) on CL development and cortical atrophy progression in patients with relapsing-remitting MS (RRMS) over 48 months. Patients (n=165) were randomized to sc IFN β-1a 44 μg, im IFN β-1a 30 μg, or glatiramer acetate 20 mg. The reference population comprised 50 DMD-untreated patients with RRMS. After 24 months, 43 of the untreated patients switched to DMDs. The four groups of patients were followed up for an additional 24 months. At 48 months the mean standard deviation number of new CLs was significantly lower in patients treated with sc IFN β-1a (1.4 ± 1.0, range 0–5) compared with im IFN β-1a (2.3 ± 1.3, range 0–6, P=0.004) and glatiramer acetate (2.2 ± 1.5, range 0–7, P=0.03). Significant reductions in CL accumulation and new white matter and gadolinium-enhancing lesions were also observed in the 43 patients who switched to DMDs after 24 months, compared with the 24 months of no treatment. Concluding, this study confirms that DMDs significantly reduce CL development and cortical atrophy progression compared with no treatment

    Enlarged Virchow Robin spaces associate with cognitive decline in multiple sclerosis.

    No full text
    The clinical significance of Virchow Robin spaces (VRS) in inflammatory brain disorders, especially in multiple sclerosis (MS), is still undefined. We analysed enlarged VRS (eVRS) by means of phase sensitive inversion recovery (PSIR) MRI sequence and investigated their association with inflammation or brain atrophy, and to clinical or physical disability. Forty-three MS patients (21 clinically isolated syndrome suggestive of MS [CIS], 15 RRMS, 7 progressive [PMS]) and 10 healthy controls (HC) were studied. 3DT1, 3DFLAIR and 2DPSIR images were obtained with a 3T MRI scanner. eVRS number and volume were calculated by manual segmentation (ITK-SNAP). Freesurfer was used to assess brain parenchymal fraction (BPF). All patients underwent clinical (EDSS) and cognitive (Rao's BRB and DKEFS) evaluation. eVRS number and volume resulted significantly higher on 2D-PSIR compared to both 3D-T1 (p<0.001) and 3D-FLAIR (p<0.001) and were significantly increased in CIS compared to HC (p<0.05), in PMS and RRMS compared to CIS (p<0.001) and in male versus female patients (p<0.05). eVRS volume increased significantly with disease duration (r = 0.6) but did not correlate with EDSS. eVRS significantly correlated with SPARTd (r = -0.47) and DKEFSfs (r = -0.46), especially when RRMS and PMS were merged in a single group (r = 0.89, p = 0.002 and r = 0.66, p = 0.009 respectively), while no correlation was found with BPF (r = 0.3), gadolinium-enhancing lesions (r = 0.2) and WMT2 lesion volume (r = 0.2). 2DPSIR allowed the detection of an impressive higher number of eVRS compared to 3DT1 and 3DFLAIR. eVRS associate with SPARTd and DKEFSfs failure in relapse-onset MS, suggesting they may contribute to cognitive decline in MS

    MRI-detectable cortical lesions in the cerebellum and their clinical relevance in multiple sclerosis

    No full text
    none8nononeFavaretto, Alice*; Lazzarotto, Andrea; Poggiali, Davide; Rolma, Giuseppe; Causin, Francesco; Rinaldi, Francesca; Perini, Paola; Gallo, PaoloFavaretto, Alice; Lazzarotto, Andrea; Poggiali, Davide; Rolma, Giuseppe; Causin, Francesco; Rinaldi, Francesca; Perini, Paola; Gallo, Paol

    Heterogeneity of cortical lesions in multiple sclerosis: an MRI perfusion study

    No full text
    In this study, dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) was used to quantify the cerebral blood flow (CBF), the cerebral blood volume (CBV), and the mean transit time (MTT) and to analyze the changes in cerebral perfusion associated with the cortical lesions in 44 patients with relapsing-remitting multiple sclerosis. The cortical lesions showed a statistically significant reduction in CBF and CBV compared with the normal-appearing gray matter, whereas there were no significant changes in the MTT. The reduced perfusion suggests a reduction of metabolism because of the loss of cortical neurons. A small population of outliers showing an increased CBF and/or CBV has also been detected. The presence of hyperperfused outliers may imply that perfusion could evolve during inflammation. These findings show that perfusion is altered in cortical lesions and that DSC-MRI can be a useful tool to investigate more deeply the evolution of cortical lesions in multiple sclerosis

    Images of CL from DIR scans (A, C, E) and PSIR scans (B, D, F) from three different patients.

    No full text
    <p>(a), two IC lesions (arrows) are observed on DIR (A) and confirmed on PSIR (B) images. (b), two IC lesions (arrows) are detected on DIR (C) and confirmed on PSIR (D) images. However, an additional ‘linear’ IC lesion can be observed on PSIR (arrow head); this lesion was not identified at the first analysis of DIR scan, but its signal intensity was re-evaluated as an IC lesion after PSIR analysis. (c), a LC (mixed) lesion is observed on PSIR (F), but not on DIR scan given the weak signal.</p
    corecore