644 research outputs found

    A BPS Interpretation of Shape Invariance

    Full text link
    We show that shape invariance appears when a quantum mechanical model is invariant under a centrally extended superalgebra endowed with an additional symmetry generator, which we dub the shift operator. The familiar mathematical and physical results of shape invariance then arise from the BPS structure associated with this shift operator. The shift operator also ensures that there is a one-to-one correspondence between the energy levels of such a model and the energies of the BPS-saturating states. These findings thus provide a more comprehensive algebraic setting for understanding shape invariance.Comment: 15 pages, 2 figures, LaTe

    Adinkras: A Graphical Technology for Supersymmetric Representation Theory

    Full text link
    We present a symbolic method for organizing the representation theory of one-dimensional superalgebras. This relies on special objects, which we have called adinkra symbols, which supply tangible geometric forms to the still-emerging mathematical basis underlying supersymmetry.Comment: 44 pages, LaTeX, 35 figure

    Effective Symmetries of the Minimal Supermultiplet of N = 8 Extended Worldline Supersymmetry

    Full text link
    A minimal representation of the N = 8 extended worldline supersymmetry, known as the `ultra-multiplet', is closely related to a family of supermultiplets with the same, E(8) chromotopology. We catalogue their effective symmetries and find a Spin(4) x Z(2) subgroup common to them all, which explains the particular basis used in the original construction. We specify a constrained superfield representation of the supermultiplets in the ultra-multiplet family, and show that such a superfield representation in fact exists for all adinkraic supermultiplets. We also exhibit the correspondences between these supermultiplets, their Adinkras and the E(8) root lattice bases. Finally, we construct quadratic Lagrangians that provide the standard kinetic terms and afford a mixing of an even number of such supermultiplets controlled by a coupling to an external 2-form of fluxes.Comment: 13 Figure

    On the Duality between Perturbative Heterotic Orbifolds and M-Theory on T^4/Z_N

    Get PDF
    The heterotic E8×E8E_8\times E_8 string compactified on an orbifold T^4/\IZ_N has gauge group G×G′G\times G' with (massless) states in its twisted sectors which are charged under both gauge group factors. In the dual M-theory on (T^4/\IZ_N)\otimes(S^1/\IZ_2) the two group factors are separated in the eleventh direction and the G and G' gauge fields are confined to the two boundary planes, respectively. We present a scenario which allows for a resolution of this apparent paradox and assigns all massless matter multiplets locally to the different six-dimensional boundary fixed planes. The resolution consists of diagonal mixing between the gauge groups which live on the connecting seven-planes (6d and the eleventh dimension) and one of the gauge group factors. We present evidence supporting this mixing by considering gauge couplings and verify local anomaly cancellation. We also discuss open problems which arise in the presence of U_1 factors.Comment: 45 pages, one figur

    Codes and Supersymmetry in One Dimension

    Full text link
    Adinkras are diagrams that describe many useful supermultiplets in D=1 dimensions. We show that the topology of the Adinkra is uniquely determined by a doubly even code. Conversely, every doubly even code produces a possible topology of an Adinkra. A computation of doubly even codes results in an enumeration of these Adinkra topologies up to N=28, and for minimal supermultiplets, up to N=32.Comment: 48 pages, a new version that combines arXiv:0811.3410 and parts of arXiv:0806.0050, for submission for publicatio

    On Graph-Theoretic Identifications of Adinkras, Supersymmetry Representations and Superfields

    Full text link
    In this paper we discuss off-shell representations of N-extended supersymmetry in one dimension, ie, N-extended supersymmetric quantum mechanics, and following earlier work on the subject codify them in terms of certain graphs, called Adinkras. This framework provides a method of generating all Adinkras with the same topology, and so also all the corresponding irreducible supersymmetric multiplets. We develop some graph theoretic techniques to understand these diagrams in terms of a relatively small amount of information, namely, at what heights various vertices of the graph should be "hung". We then show how Adinkras that are the graphs of N-dimensional cubes can be obtained as the Adinkra for superfields satisfying constraints that involve superderivatives. This dramatically widens the range of supermultiplets that can be described using the superspace formalism and organizes them. Other topologies for Adinkras are possible, and we show that it is reasonable that these are also the result of constraining superfields using superderivatives. The family of Adinkras with an N-cubical topology, and so also the sequence of corresponding irreducible supersymmetric multiplets, are arranged in a cyclical sequence called the main sequence. We produce the N=1 and N=2 main sequences in detail, and indicate some aspects of the situation for higher N.Comment: LaTeX, 58 pages, 52 illustrations in color; minor typos correcte

    4D, N = 1 Supersymmetry Genomics (II)

    Full text link
    We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of ncn_c-cis and ntn_t-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these "chemical enantiomer" numbers are found to be ncn_c = ntn_t = 1 and ncn_c = 1, ntn_t = 2, respectively.Comment: 40 pages, 8 figures, sequel to "4D, N = 1 Supersymmetry Genomics (I)" [arxiv: 0902.3830
    • …
    corecore