210 research outputs found

    Transport of magnetic field by a turbulent flow of liquid sodium

    Full text link
    We study the effect of a turbulent flow of liquid sodium generated in the von K\'arm\'an geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.Comment: 4 pages, 6 figure

    Influence of turbulence on the dynamo threshold

    Get PDF
    We use direct and stochastic numerical simulations of the magnetohydrodynamic equations to explore the influence of turbulence on the dynamo threshold. In the spirit of the Kraichnan-Kazantsev model, we model the turbulence by a noise, with given amplitude, injection scale and correlation time. The addition of a stochastic noise to the mean velocity significantly alters the dynamo threshold. When the noise is at small (resp. large) scale, the dynamo threshold is decreased (resp. increased). For a large scale noise, a finite correlation time reinforces this effect

    Wave-vortex interaction

    Full text link
    We present an experimental study on the effect of a electromagneticaly generated vortex flow on parametrically amplified waves at the surface of a fluid. The underlying vortex flow, generated by a periodic Lorentz force, creates spatio-temporal fluctuations that interact nonlinearly with the standing surface waves. We characterize the bifurcation diagram and measure the power spectrum density (PSD) of the local surface wave amplitude. We show that the parametric instability threshold increases with increasing intensity of the vortex flow.Comment: 8 pages, 10 figures, submitted to Phys. Rev.

    Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium

    Get PDF
    We report the observation of dynamo action in the VKS experiment, i.e., the generation of magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number Rm \sim 30. A mean magnetic field of order 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.Comment: 4 pages, 5 figure

    Observation of intermittency in wave turbulence

    Get PDF
    We report the observation of intermittency in gravity-capillary wave turbulence on the surface of mercury. We measure the temporal fluctuations of surface wave amplitude at a given location. We show that the shape of the probability density function of the local slope increments of the surface waves strongly changes across the time scales. The related structure functions and the flatness are found to be power laws of the time scale on more than one decade. The exponents of these power laws increase nonlinearly with the order of the structure function. All these observations show the intermittent nature of the increments of the local slope in wave turbulence. We discuss the possible origin of this intermittency.Comment: new version to Phys. Rev. Let

    Hexagons, Kinks and Disorder in Oscillated Granular Layers

    Full text link
    Experiments on vertically oscillated granular layers in an evacuated container reveal a sequence of well-defined pattern bifurcations as the container acceleration is increased. Period doublings of the layer center of mass motion and a parametric wave instability interact to produce hexagons and more complicated patterns composed of distinct spatial domains of different relative phase separated by kinks (phase discontinuities). Above a critical acceleration, the layer becomes disordered in both space and time.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "myprint" which is the defaul

    Solitary vortex couples in viscoelastic Couette flow

    Full text link
    We report experimental observation of a localized structure, which is of a new type for dissipative systems. It appears as a solitary vortex couple ("diwhirl") in Couette flow with highly elastic polymer solutions. A unique property of the diwhirls is that they are stationary, in contrast to the usual localized wave structures in both Hamiltonian and dissipative systems which are stabilized by wave dispersion. It is also a new object in fluid dynamics - a couple of vortices that build a single entity somewhat similar to a magnetic dipole. The diwhirls arise as a result of a purely elastic instability through a hysteretic transition at negligible Reynolds numbers. It is suggested that the vortex flow is driven by the same forces that cause the Weissenberg effect. The diwhirls have a striking asymmetry between the inflow and outflow, which is also an essential feature of the suggested elastic instability mechanism.Comment: 9 pages (LaTeX), 5 Postscript figures, submitte

    Magnetic field reversals in an experimental turbulent dynamo

    Get PDF
    We report the first experimental observation of reversals of a dynamo field generated in a laboratory experiment based on a turbulent flow of liquid sodium. The magnetic field randomly switches between two symmetric solutions B and -B. We observe a hierarchy of time scales similar to the Earth's magnetic field: the duration of the steady phases is widely distributed, but is always much longer than the time needed to switch polarity. In addition to reversals we report excursions. Both coincide with minima of the mechanical power driving the flow. Small changes in the flow driving parameters also reveal a large variety of dynamo regimes.Comment: 5 pages, 4 figure
    • …
    corecore