40 research outputs found

    Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology.

    Get PDF
    Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein⁻protein and protein⁻lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it

    Changes in α-Synuclein Posttranslational Modifications in an AAV-Based Mouse Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) pathology is characterized by the loss of dopaminergic neurons of the nigrostriatal system and accumulation of Lewy bodies (LB) and Lewy neurites (LN), inclusions mainly composed of alpha-synuclein (alpha-Syn) fibrils. Studies linking the occurrence of mutations and multiplications of the alpha-Syn gene (SNCA) to the onset of PD support that alpha-Syn deposition may play a causal role in the disease, in line with the hypothesis that disease progression may correlate with the spreading of LB pathology in the brain. Interestingly, LB accumulate posttranslationally modified forms of alpha-Syn, suggesting that alpha-Syn posttranslational modifications impinge on alpha-Syn aggregation and/or toxicity. Here, we aimed at investigating changes in alpha-Syn phosphorylation, nitration and acetylation in mice subjected to nigral stereotaxic injections of adeno-associated viral vectors inducing overexpression of human alpha-Syn (AAV-h alpha-Syn), that model genetic PD with SNCA multiplications. We detected a mild increase of serine (Ser) 129 phosphorylated alpha-Syn in the substantia nigra (SN) of AAV-h alpha-Syn-injected mice in spite of the previously described marked accumulation of this PTM in the striatum. Following AAV-h alpha-Syn injection, tyrosine (Tyr) 125/136 nitrated alpha-Syn accumulation in the absence of general 3-nitrotirosine (3NT) or nitrated-Tyr39 alpha-Syn changes and augmented protein acetylation abundantly overlapping with alpha-Syn immunopositivity were also detected

    The Contribution of -Synuclein Spreading to Parkinson’s Disease Synaptopathy

    Get PDF
    Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson’s disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to -synuclein deposition at synaptic sites. Indeed, -synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that -synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary -synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of -synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration

    Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate

    Get PDF
    : Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management

    DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson’s disease

    Get PDF
    Dopamine dyshomeostasis has been acknowledged among the determinants of nigrostriatal neuron degeneration in Parkinson’s disease (PD). Several studies in experimental models and postmortem PD patients underlined increasing levels of the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is highly reactive towards proteins. DOPAL has been shown to covalently modify the presynaptic protein αSynuclein (αSyn), whose misfolding and aggregation represent a major trait of PD pathology, triggering αSyn oligomerization in dopaminergic neurons. Here, we demonstrated that DOPAL elicits αSyn accumulation and hampers αSyn clearance in primary neurons. DOPAL-induced αSyn buildup lessens neuronal resilience, compromises synaptic integrity, and overwhelms protein quality control pathways in neurites. The progressive decline of neuronal homeostasis further leads to dopaminergic neuron loss and motor impairment, as showed in in vivo models. Finally, we developed a specific antibody which detected increased DOPAL-modified αSyn in human striatal tissues from idiopathic PD patients, corroborating the translational relevance of αSyn-DOPAL interplay in PD neurodegeneration

    Living in promiscuity: The multiple partners of alpha-synuclein at the synapse in physiology and pathology

    Get PDF
    Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein⁻protein and protein⁻lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it

    Dopamine transporter/α-synuclein complexes are altered in the post mortem caudate putamen of Parkinson’s disease: An in situ proximity ligation assay study

    No full text
    Parkinson's disease (PD) is characterized by the degeneration of the dopaminergic nigrostriatal neurons and the presence of Lewy bodies (LB) and Lewy neurites (LN) mainly composed of α-synuclein. By using the in situ proximity ligation assay (PLA), which allows for the visualization of protein-protein interactions in tissues to detect dopamine transporter (DAT)/α-synuclein complexes, we previously described that these are markedly redistributed in the striatum of human α-synuclein transgenic mice at the phenotypic stage, showing dopamine (DA) release impairment without a DAT drop and motor symptoms. Here, we used the in situ PLA to investigate DAT/α-synuclein complexes in the caudate putamen of PD patients and age-matched controls. They were found to be redistributed and showed an increased size in PD patients, where we observed several neuropil-like and neuritic-like PLA-positive structures. In the PD brains, DAT immunolabeling showed a pattern similar to that of in situ PLA in areas with abundant α-synuclein neuropathology. This notwithstanding, the in situ PLA signal was only partially retracing DAT or α-synuclein immunolabeling, suggesting that a large amount of complexes may have been lost along with the degeneration process. These findings reveal a DAT/α-synuclein neuropathological signature in PD and hint that synaptic alterations involving striatal DAT may derive from α-synuclein aggregation

    Mitochondria and alpha-synuclein: Friends or foes in the pathogenesis of Parkinson's disease?

    No full text
    Parkinson’s disease (PD) is a movement disorder characterized by dopaminergic nigrostriatal neuron degeneration and the formation of Lewy bodies (LB), pathological inclusions containing fibrils that are mainly composed of α-synuclein. Dopaminergic neurons, for their intrinsic characteristics, have a high energy demand that relies on the efficiency of the mitochondria respiratory chain. Dysregulations of mitochondria, deriving from alterations of complex I protein or oxidative DNA damage, change the trafficking, size and morphology of these organelles. Of note, these mitochondrial bioenergetics defects have been related to PD. A series of experimental evidence supports that α-synuclein physiological action is relevant for mitochondrial homeostasis, while its pathological aggregation can negatively impinge on mitochondrial function. It thus appears that imbalances in the equilibrium between the reciprocal modulatory action of mitochondria and α-synuclein can contribute to PD onset by inducing neuronal impairment. This review will try to highlight the role of physiological and pathological α-synuclein in the modulation of mitochondrial functions

    The Contribution of α-Synuclein Spreading to Parkinson’s Disease Synaptopathy

    No full text
    Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson’s disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration
    corecore