9 research outputs found

    Bee colony assessments with the Liebefeld method: How do individual beekeepers influence results and are photo assessments an option to reduce variability?

    Get PDF
    Colony strength, food storage and brood development are a fundamental part of each honeybee field study. Colony assessments are used to compare and assess those for beehive over time. At present, most colony assessments are made by experienced beekeepers according to Liebefeld method. This method is based on an estimation of areas covered by honeybees, food and brood stages on each side of a comb. Areas are counted from a grid separating the comb side into 8 sections which are protocolled with an accuracy of 0.5 sections. An assessment for a hive takes up to 20 min and even with two field locations, it is necessary to split assessments between beekeepers. So, it is important to make estimates as comparable as possible. For this purpose, beekeepers practice the assessments on pre-determined photographs to “calibrate themselves”. The advantage of the Liebefeld assessment is that the condition of bee hive is estimated with minimum disturbance of the bees. Digital photography is under discussion to gain data with high precision and accuracy with one major disadvantage. To be able to see food and brood stages in photographs, bees have to be removed from combs. This, however, results in a disturbance of the colony – especially if the assessments take place in short time intervals of 7 ± 1 days. An experiment was performed to evaluate the variation between individual beekeepers and to compare the results to data generated with photographs. For the experiment, five colonies were assessed each by four beekeepers independently according to Liebefeld method. Each comb side of the five colonies was photographed with and without honeybees sitting on it for precise analysis at the computer for a number of bees, nectar cells, pollen cells, eggs, open brood and capped brood. The number of bees and cells with the different contents were generated by an area-based assessment in ImageJ as well as a detailed counting with help of HiveAnalyzerÂź Software. Data from beekeeper estimations were then compared with assessments based on digital photography. With the results of the experiment, we tried to answer several questions. With the study, we wanted to determine the level of variation between the beekeepers for the live stages and food stores estimated.Colony strength, food storage and brood development are a fundamental part of each honeybee field study. Colony assessments are used to compare and assess those for beehive over time. At present, most colony assessments are made by experienced beekeepers according to Liebefeld method. This method is based on an estimation of areas covered by honeybees, food and brood stages on each side of a comb. Areas are counted from a grid separating the comb side into 8 sections which are protocolled with an accuracy of 0.5 sections. An assessment for a hive takes up to 20 min and even with two field locations, it is necessary to split assessments between beekeepers. So, it is important to make estimates as comparable as possible. For this purpose, beekeepers practice the assessments on pre-determined photographs to “calibrate themselves”. The advantage of the Liebefeld assessment is that the condition of bee hive is estimated with minimum disturbance of the bees. Digital photography is under discussion to gain data with high precision and accuracy with one major disadvantage. To be able to see food and brood stages in photographs, bees have to be removed from combs. This, however, results in a disturbance of the colony – especially if the assessments take place in short time intervals of 7 ± 1 days. An experiment was performed to evaluate the variation between individual beekeepers and to compare the results to data generated with photographs. For the experiment, five colonies were assessed each by four beekeepers independently according to Liebefeld method. Each comb side of the five colonies was photographed with and without honeybees sitting on it for precise analysis at the computer for a number of bees, nectar cells, pollen cells, eggs, open brood and capped brood. The number of bees and cells with the different contents were generated by an area-based assessment in ImageJ as well as a detailed counting with help of HiveAnalyzerÂź Software. Data from beekeeper estimations were then compared with assessments based on digital photography. With the results of the experiment, we tried to answer several questions. With the study, we wanted to determine the level of variation between the beekeepers for the live stages and food stores estimated

    Neonicotinoids override a parasite exposure impact on hibernation success of a key bumblebee pollinator

    Get PDF
    1. The persistence of both geographical and reproductive boundaries between related species poses a fundamental puzzle in biology. Reproductive interactions between species can have a substantial impact on the maintenance of a boundary, potentially contributing to its collapse (e.g. via hybridisation) or facilitating reproductive isolation (e.g. via reinforcement). 2. The degree to which two parapatric insect species in the genus Phymata are reproductively isolated was evaluated and several mechanisms that could contribute to the maintenance of species boundaries were assessed. 3. Behavioural assays showed no indication of species-assortative mating, nor any fecundity costs associated with heterospecific mating. Thus, there was no evidence of prezygotic mechanisms of reproductive isolation between the two species. 4.In laboratory crosses, it was found that the two species were indeed capable of producing viable F1 hybrids. Morphologically, these hybrids were phenotypically intermediate to the two parental species, and similar to the phenotypes seen in natural populations thought to occur in a hybrid zone. F1 hybrids did not show reduced viability, although there was some suggestion of ‘hybrid breakdown’, evident from the lower viability observed for progeny of ‘natural hybrids’. 5. Collectively, we show that despite genetically based morphological differences between species, P. americana and pennsylvanica can, and probably do hybridise. More studies are needed to understand the mechanisms that maintain the distinct phenotypes and geographical ranges of these species, despite the considerable potential for introgression

    Dynamics of honeybee colony performance.

    No full text
    <p>Data of all three endpoints number of adult bees (A), eggs and larvae (B) and pupae (C) for the different pollen feeding treatments (black  =  control; red  =  neonicotinoids) and honeybee strains (circles  =  strain A; crosses  =  strain B). The data were obtained at four successive colony assessment dates (X-axis subpanels within figures) performed before (Spring 2011) and directly after the 1.5 months of experimental pollen feeding (Summer 2011), 3.5 months after the treatment (Autumn 2011) and one year later (Spring 2012). Estimated numbers on the Y-axes are truncated for adult bees and pupae for better overview.</p

    Pollen collections.

    No full text
    <p>Mean (±SD) fresh weights of pollen collections for control (black) and neonicotinoid-exposed (white) colonies over the course of the treatment period (pollen-trap contents were weighed in 2-2–3 days intervals throughout the study).</p

    Model-based estimates of contrasts and corresponding significance levels of the treatment effect (neonicotinoid <i>versus</i> control) and honeybee genetics (strain A <i>vs.</i> strain B).

    No full text
    <p>Results are shown in the transformed scale for the three response variables adult bees, eggs and larvae and pupae assessed directly after the 1.5 months of treatment (Summer 2011), 3.5 months later (Autumn 2011) and 1 year later (Spring 2012). For adult bees and eggs and larvae (the models that included a significant threefold interaction between treatment, honeybee strain and assessment date) contrasts for treatment effects were also computed within individual honeybee strains at each assessment date. <i>P</i> values are adjusted for multiple testing. ***<i>P</i><0.001; **<i>P</i><0.01; *<i>P</i><0.05; <b>·</b> 0.05<<i>P</i><0.1.</p

    Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure

    No full text

    Gesellschaftsbeziehungen

    No full text
    corecore