68 research outputs found

    Perceptual adaptation by normally hearing listeners to a simulated "hole" in hearing

    Get PDF
    Simulations of cochlear implants have demonstrated that the deleterious effects of a frequency misalignment between analysis bands and characteristic frequencies at basally shifted simulated electrode locations are significantly reduced with training. However, a distortion of frequency-to-place mapping may also arise due to a region of dysfunctional neurons that creates a "hole" in the tonotopic representation. This study simulated a 10 mm hole in the mid-frequency region. Noise-band processors were created with six output bands (three apical and three basal to the hole). The spectral information that would have been represented in the hole was either dropped or reassigned to bands on either side. Such reassignment preserves information but warps the place code, which may in itself impair performance. Normally hearing subjects received three hours of training in two reassignment conditions. Speech recognition improved considerably with training. Scores were much lower in a baseline (untrained) condition where information from the hole region was dropped. A second group of subjects trained in this dropped condition did show some improvement; however, scores after training were significantly lower than in the reassignment conditions. These results are consistent with the view that speech processors should present the most informative frequency range irrespective of frequency misalignment. 0 2006 Acoustical Society of America

    Instrumented tools and objects : design, algorithms, and applications to assembly tasks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.We developed an instrumented tool system comprised of wireless nodes and sensor systems to facilitate distributed robotic assembly tasks. This robotic system was deployed on two separate robotic assembly scenarios: one scenario used programmable autonomous beacons to facilitate precise localization of an assembly robot within a mock airplane wing, while the second used programmable assembly components to simplify sensing and coordination in a distributed, multi-robot assembly task. An instrumented tool system comprised of two types of programmable nodes (beacons and assembly components) and two types of robot-mounted sensors was designed, implemented, and tested. On-board microprocessors allow each element of the system to perform sensing and communicate over an infrared communication protocol. Algorithms for sensing and distributed communication were developed to perform local sensing tasks between assembly robots and instrumented materials.by Matthew N. Faulkner.M.Eng

    New stability results for Einstein scalar gravity

    Full text link
    We consider asymptotically anti de Sitter gravity coupled to a scalar field with mass slightly above the Breitenlohner-Freedman bound. This theory admits a large class of consistent boundary conditions characterized by an arbitrary function WW. An important open question is to determine which WW admit stable ground states. It has previously been shown that the total energy is bounded from below if WW is bounded from below and the bulk scalar potential V(Ď•)V(\phi) admits a suitable superpotential. We extend this result and show that the energy remains bounded even in some cases where WW can become arbitrarily negative. As one application, this leads to the possibility that in gauge/gravity duality, one can add a double trace operator with negative coefficient to the dual field theory and still have a stable vacuum

    Photoemission "experiments" on holographic superconductors

    Get PDF
    We study the effects of a superconducting condensate on holographic Fermi surfaces. With a suitable coupling between the fermion and the condensate, there are stable quasiparticles with a gap. We find some similarities with the phenomenology of the cuprates: in systems whose normal state is a non-Fermi liquid with no stable quasiparticles, a stable quasiparticle peak appears in the condensed phase.Comment: 14 pages, 13 figures; v2: typos corrected and some clarification adde

    Non-Fermi-liquid d-wave metal phase of strongly interacting electrons

    Get PDF
    Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau's Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics. One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature copper-oxide superconductors exhibit `strange metal' behaviour that is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself. Here we present a theory for a specific example of a strange metal---the 'd-wave metal'. Using variational wavefunctions, gauge theoretic arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian---the usual t-J model with electron kinetic energy tt and two-spin exchange JJ supplemented with a frustrated electron `ring-exchange' term, which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.Comment: 22 pages, 12 figures: 6 pages, 7 figures of main text + 16 pages, 5 figures of Supplementary Information; this is approximately the version published in Nature, minus various subedits in the main tex

    A holographic model for the fractional quantum Hall effect

    Full text link
    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,Z)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: We specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,Z) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.Comment: 86 pages, 16 figures; v.2 references added, typos fixed, improved discussion of ref. [39]; v.3 more references added and typos fixed, several statements clarified, v.4 version accepted for publication in JHE

    Bone mass of female dance students prior to professional dance training: A cross-sectional study

    Get PDF
    Article Authors Metrics Comments Related Content Abstract Introduction Methods Results Discussion Conclusions Acknowledgments References Reader Comments (0) Media Coverage (0) Figures Abstract Background Professional dancers are at risk of developing low bone mineral density (BMD). However, whether low BMD phenotypes already exist in pre-vocational dance students is relatively unknown. Aim To cross-sectionally assess bone mass parameters in female dance students selected for professional dance training (first year vocational dance students) in relation to aged- and sex-matched controls. Methods 34 female selected for professional dance training (10.9yrs ±0.7) and 30 controls (11.1yrs ±0.5) were examined. Anthropometry, pubertal development (Tanner) and dietary data (3-day food diary) were recorded. BMD and bone mineral content (BMC) at forearm, femur neck (FN) and lumbar spine (LS) were assessed using Dual-Energy X-Ray Absorptiometry. Volumetric densities were estimated by calculating bone mineral apparent density (BMAD). Results Dancers were mainly at Tanner pubertal stage I (vs. stage IV in controls, p<0.001), and demonstrated significantly lower body weight (p<0.001) and height (p<0.01) than controls. Calorie intake was not different between groups, but calcium intake was significantly greater in dancers (p<0.05). Dancers revealed a significantly lower BMC and BMD values at all anatomical sites (p<0.001), and significantly lower BMAD values at the LS and FN (p<0.001). When adjusted for covariates (body weight, height, pubertal development and calcium intake), dance students continued to display a significantly lower BMD and BMAD at the FN (p<0.05; p<0.001) at the forearm (p<0.01). Conclusion Before undergoing professional dance training, first year vocational dance students demonstrated inferior bone mass compared to controls. Longitudinal models are required to assess how bone health-status changes with time throughout professional training
    • …
    corecore