591 research outputs found

    Excitation power and temperature dependence of excitons in CuInSe2

    Get PDF
    Excitonic recombination processes in high quality CuInSe2 single crystals have been studied by photoluminescence (PL) and reflectance spectroscopy as a function of excitation powers and temperature. Excitation power dependent measurements confirm the identification of well-resolved A and B free excitons in the PL spectra and analysis of the temperature quenching of these lines provides values for activation energies. These are found to vary from sample to sample, with values of 12.5 and 18.4meV for the A and B excitons, respectively, in the one showing the highest quality spectra. Analysis of the temperature and power dependent PL spectra from the bound excitonic lines, labelled M1, M2, and M3 appearing in multiplets points to a likely assignment of the hole involved in each case. The M1 excitons appear to involve a conduction band electron and a hole from the B valence band hole. In contrast, an A valence band hole appears to be involved for the M2 and M3 excitons. In addition, the M1 exciton multiplet seems to be due to the radiative recombination of excitons bound to shallow hydrogenic defects, whereas the excitons involved in M2 and M3 are bound to more complex defects. In contrast to the M1 exciton multiplet, the excitonic lines of M2 and M3 saturate at high excitation powers suggesting that the concentration of the defects involved is low. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709448

    Diamagnetic shift of the A free exciton in CuGaSe2 single crystals

    Get PDF
    Single crystals of CuGaSe2 were studied using magnetophotoluminescence inmagnetic fields up to 20 T at 4.2 K. The rate of the diamagnetic shift in the A free exciton peak was determined to be 9.82 x 10(-6) eV/T-2. This rate was used to calculate the reduced mass as 0.115m(0), the binding energy as 12.9 meV, the Bohr radius as 5.1 nm and an effective hole mass of 0.64m(0) (m(0) is the free electron mass) of the free A exciton using a low-field perturbation approach and the hydrogenic model

    Excited states of the free excitons in CuInSe2 single crystals

    Get PDF
    High-quality CuInSe2 single crystals were studied using polarization resolved photoluminescence (PL) and magnetophotoluminescence (MPL). The emission lines related to the first (n=2) excited states for the A and B free excitons were observed in the PL and MPL spectra at 1.0481 meV and 1.0516 meV, respectively. The spectral positions of these lines were used to estimate accurate values for the A and B exciton binding energies (8.5 meV and 8.4 meV, respectively), Bohr radii (7.5 nm), band gaps (E-g(A)=1.050 eV and E-g(B)=1.054 eV), and the static dielectric constant (11.3) assuming the hydrogenic model

    Anisotropy of effective masses in CuInSe2

    Get PDF
    Anisotropy of the valence band is experimentally demonstrated in CuInSe2, a key component of the absorber layer in one of the leading thin-film solar cell technology. By changing the orientation of applied magnetic fields with respect to the crystal lattice, we measure considerable differences in the diamagnetic shifts and effective g-factors for the A and B free excitons. The resulting free exciton reduced masses are combined with a perturbation model for non-degenerate independent excitons and theoretical dielectric constants to provide the anisotropic effective hole masses, revealing anisotropies of 5.5 (4.2) for the A (B) valence bands

    Evidence for magnetoplasmon character of the cyclotron resonance response of a two-dimensional electron gas

    Full text link
    Experimental results on the absolute magneto-transmission of a series of high density, high mobility GaAs quantum wells are compared with the predictions of a recent magnetoplasmon theory for values of the filling factor above 2. We show that the magnetoplasmon picture can explain the non-linear features observed in the magnetic field evolution of the cyclotron resonance energies and of the absorption oscillator strength. This provides experimental evidence that inter Landau level excitations probed by infrared spectroscopy need to be considered as many body excitations in terms of magnetoplasmons: this is especially true when interpreting the oscillator strengths of the cyclotron transitions

    A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production

    Get PDF
    International audienceUltrasound-vaporizable microdroplets can be exploited for targeted drug delivery. However, it requires customized microfluidic techniques able to produce monodisperse, capillary-sized and biocompatible multiple emulsions. Recent development of microfluidic devices led to the optimization of microdroplet production with high yields, low polydispersity and well-defined diameters. So far, only few were shown to be efficient for simple droplets or multiple emulsions production below 5 microns in diameter, which is required to prevent microembolism after intravenous injection. Here, we present a versatile microchip for both simple and multiple emulsion production. This parallelized system based on microchannel emulsification was designed to produce perfluorocarbon in water or water within perfluorocarbon in water emulsions with capillary sizes (<5 μm) and polydispersity index down to 5 % for in vivo applications such as spatiotemporally-triggered drug delivery using Ultrasound. We show that droplet production at this scale is mainly controlled by interfacial tension forces, how capillary and viscosity ratios influence droplet characteristics and how different production regimes may take place. The better understanding of droplet formation and its relation to applied pressures is supported by observations with a high-speed camera. Compared to previous microchips, this device opens perspectives to produce injectable and biocompatible droplets with a reasonable yield in order to realize preclinical studies in mice

    Effect of a magnetic field on the two-phonon Raman scattering in graphene

    Full text link
    We have studied, both experimentally and theoretically, the change of the so-called 2D band of the Raman scattering spectrum of graphene (the two-phonon peak near 2700 cm-1) in an external magnetic field applied perpendicular to the graphene crystal plane at liquid helium temperature. A shift to lower frequency and broadening of this band is observed as the magnetic field is increased from 0 to 33 T. At fields up to 5--10 T the changes are quadratic in the field while they become linear at higher magnetic fields. This effect is explained by the curving of the quasiclassical trajectories of the photo-excited electrons and holes in the magnetic field, which enables us (i) to extract the electron inelastic scattering rate, and (ii) to conclude that electronic scattering accounts for about half of the measured width of the 2D peak.Comment: 11 pages, 7 figure

    Real time plasma equilibrium reconstruction in a Tokamak

    Get PDF
    The problem of equilibrium of a plasma in a Tokamak is a free boundary problemdescribed by the Grad-Shafranov equation in axisymmetric configurations. The right hand side of this equation is a non linear source, which represents the toroidal component of the plasma current density. This paper deals with the real time identification of this non linear source from experimental measurements. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation

    Diffractive triangulation of radiative point sources

    Get PDF
    We describe a general method to determine the location of a point source of waves relative to a twodimensional single-crystalline active pixel detector. Based on the inherent structural sensitivity of crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the location of a wave emitter. The principle described here can be applied to various types of waves, provided that the detector elements are suitably structured. As a prototypical practical application of the general detection principle, a digital hybrid pixel detector is used to localize a source of electrons for Kikuchi diffraction pattern measurements in the scanning electron microscope. This approach provides a promising alternative method to calibrate Kikuchi patterns for accurate measurements of microstructural crystal orientations, strains, and phase distributions
    corecore