26 research outputs found

    Growth Based Morphogenesis of Vertebrate Limb Bud

    Get PDF
    Many genes and their regulatory relationships are involved in developmental phenomena. However, by chemical information alone, we cannot fully understand changing organ morphologies through tissue growth because deformation and growth of the organ are essentially mechanical processes. Here, we develop a mathematical model to describe the change of organ morphologies through cell proliferation. Our basic idea is that the proper specification of localized volume source (e.g., cell proliferation) is able to guide organ morphogenesis, and that the specification is given by chemical gradients. We call this idea “growth-based morphogenesis.” We find that this morphogenetic mechanism works if the tissue is elastic for small deformation and plastic for large deformation. To illustrate our concept, we study the development of vertebrate limb buds, in which a limb bud protrudes from a flat lateral plate and extends distally in a self-organized manner. We show how the proportion of limb bud shape depends on different parameters and also show the conditions needed for normal morphogenesis, which can explain abnormal morphology of some mutants. We believe that the ideas shown in the present paper are useful for the morphogenesis of other organs

    An Assessment of the Role of Chimpanzees in AIDS Vaccine Research

    Get PDF
    Prior to Simian Immunodeficiency Virus (SIV)-infected macaques becoming the ‘model of choice’ in the 1990s, chimpanzees were widely used in AIDS vaccine research and testing. Faced with the continued failure to develop an effective human vaccine, some scientists are calling for a return to their widespread use. To assess the past and potential future contribution of chimpanzees to AIDS vaccine development, databases and published literature were systematically searched to compare the results of AIDS vaccine trials in chimpanzees with those of human clinical trials, and to determine whether the chimpanzee trials were predictive of the human response. Protective and/or therapeutic responses have been elicited in chimpanzees, via: passive antibody transfer; CD4 analogues; attenuated virus; many types and combinations of recombinant HIV proteins; DNA vaccines; recombinant adenovirus and canarypox vaccines; and many multi-component vaccines using more than one of these approaches. Immunogenicity has also been shown in chimpanzees for vaccinia-based and peptide vaccines. Protection and/or significant therapeutic effects have not been demonstrated by any vaccine to date in humans. Vaccine responses in chimpanzees and humans are highly discordant. Claims of the importance of chimpanzees in AIDS vaccine development are without foundation, and a return to the use of chimpanzees in AIDS research/vaccine development is scientifically unjustifiable
    corecore