1,273 research outputs found

    Resonantly enhanced filamentation in gases

    Full text link
    In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses

    La question de Sein et de Haben dans le parfait actif allemand : esquisse d'une méthodologie

    Get PDF
    RĂ©sumĂ©          Pour rendre compte des parfaits pĂ©riphrastiques de l’allemand contemporain – et en particulier des cas « inexpliquĂ©s » que les grammaires qualifient d’« exceptions » –, il faut reconsidĂ©rer la question dans son ensemble, c’est-Ă -dire  intĂ©grer d’une part les donnĂ©es diachroniques, (car l’« état des lieux » sur lequel se basent les analyses syntaxiques ou sĂ©mantiques des grammaires a Ă©tĂ© faussĂ© par la force niveleuse de l’analogie qui uniformise) et d’autre part reconsidĂ©rer la structure mĂȘme de ces formes verbales dans l’assiette propositionnelle dans laquelle elles sont insĂ©rĂ©es.          Ces formes pĂ©riphrastiques en sein et haben se rencontrent dans des propositions oĂč opĂšrent des structures attributives (voir les travaux de J. M. Zemb) dont Sein et haben assurent la base verbale. Ils y fonctionnent comme des verbes attributifs, opĂ©rant une attribution d’un « contenu » rĂ©sultatif ou non-rĂ©sultatif sur un support (le sujet dans la cas de l’attribution directe, l’objet dans le cas de l’attribution indirecte).          La question de ces formes pĂ©riphrastiques du parfait se rapporte ainsi Ă  deux questions de nature attributive :  1. Quelle est la nature aspectuelle de l’attribut (la forme participiale) qui doit ĂȘtre attribuĂ© ? La considĂ©ration d’« entier » vs. « fragmentaire » (du sujet comme de l’attribut) de mĂȘme que celle l’« unique » (singulier vs. pluriel),  qui permettent de fines analyses sĂ©mantiques se rĂ©vĂšlent ĂȘtre essentielles.            2. Quels sont les critĂšres de l’attribution sur tel ou tel support (sujet ou objet) ? Et de quelle façon le support en est-il affectĂ© ? Le critĂšre de son degrĂ© d’affectation apparaĂźt et est corrĂ©lĂ© avec celui de sa dĂ©termination.

    Stellar and Quasar Feedback in Concert: Effects on AGN Accretion, Obscuration, and Outflows

    Get PDF
    We study the interaction of feedback from active galactic nuclei (AGN) and a multi-phase interstellar medium (ISM), in simulations including explicit stellar feedback, multi-phase cooling, accretion-disk winds, and Compton heating. We examine radii ~0.1-100 pc around a black hole (BH), where the accretion rate onto the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) The BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ~0.03-1 Msun/yr, sufficient to power luminous AGN. (2) The gas disk in the galactic nucleus undergoes an initial burst of star formation followed by several Myrs where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ~L/c couple efficiently to the ISM and have dramatic effects on ISM properties within ~100 pc. AGN winds suppress the nuclear SFR by factors ~10-30 and BH accretion rate by factors ~3-30. They increase the outflow rate from the nucleus by factors ~10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically-thin sightlines to explain Type-I AGN. A 'torus-like' geometry arises self-consistently as AGN feedback evacuates gas in polar regions.Comment: 17 pages, 12 figures, MNRAS accepted (revised to match published version

    The formation of massive, quiescent galaxies at cosmic noon

    Get PDF
    The cosmic noon (z~1.5-3) marked a period of vigorous star formation for most galaxies. However, about a third of the more massive galaxies at those times were quiescent in the sense that their observed stellar populations are inconsistent with rapid star formation. The reduced star formation activity is often attributed to gaseous outflows driven by feedback from supermassive black holes, but the impact of black hole feedback on galaxies in the young Universe is not yet definitively established. We analyze the origin of quiescent galaxies with the help of ultra-high resolution, cosmological simulations that include feedback from stars but do not model the uncertain consequences of black hole feedback. We show that dark matter halos with specific accretion rates below ~0.25-0.4 per Gyr preferentially host galaxies with reduced star formation rates and red broad-band colors. The fraction of such halos in large dark matter only simulations matches the observed fraction of massive quiescent galaxies (~10^10-10^11 Msun). This strongly suggests that halo accretion rate is the key parameter determining which massive galaxies at z~1.5-3 become quiescent. Empirical models that connect galaxy and halo evolution, such as halo occupation distribution or abundance matching models, assume a tight link between galaxy properties and the masses of their parent halos. These models will benefit from adding the specific accretion rate of halos as a second model parameter.Comment: 5 pages, 5 figures, to appear in MNRAS Letter

    Stellar feedback sets the universal acceleration scale in galaxies

    Get PDF
    It has been established for decades that rotation curves deviate from the Newtonian gravity expectation given baryons alone below a characteristic acceleration scale g†∌10⁻⁞ cm s⁻ÂČ⁠, a scale promoted to a new fundamental constant in MOND. In recent years, theoretical and observational studies have shown that the star formation efficiency (SFE) of dense gas scales with surface density, SFE ∌ ÎŁ/ÎŁ_(crit) with ÎŁ_(crit)∌⟚p˙/m∗⟩/(πG)∌1000 M_⊙ pc⁻ÂČ (where ⟹p˙/m∗⟩ is the momentum flux output by stellar feedback per unit stellar mass in a young stellar population). We argue that the SFE, more generally, should scale with the local gravitational acceleration, i.e. that SFE ∌g_(tot)/g_(crit) ≡ (GM_(tot)/RÂČ)/⟹p˙/m∗⟩⁠, where M_(tot) is the total gravitating mass and g_(crit) = ⟹p˙/m∗⟩ = πGÎŁ_(crit) ≈ 10⁻⁞ cm s⁻ÂČ â‰ˆ g†. Hence, the observed g† may correspond to the characteristic acceleration scale above which stellar feedback cannot prevent efficient star formation, and baryons will eventually come to dominate. We further show how this may give rise to the observed acceleration scaling g_(obs) ∌ (g_(baryon)g†)^(1/2) (where g_(baryon) is the acceleration due to baryons alone) and flat rotation curves. The derived characteristic acceleration g† can be expressed in terms of fundamental constants (gravitational constant, proton mass, and Thomson cross-section): g†∌0.1Gmp_/σ_T⁠
    • 

    corecore