5 research outputs found
Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images
OBJECTIVE: Apply psychometric theory to develop and validate a visual grading scale for assessing visual perception of AP pelvis digital image quality.
METHODS: Psychometric theory was used to guide scale development. Seven phantom and 7 cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images; 184 volunteers scored cadaver images. Factor analysis and Cronbach’s alpha were used to assess scale validity and reliability.
RESULTS: A 24 item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good inter-item correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α= 0.8 and 0.9, respectively). Factor analysis suggested the scale is multidimensional (assessing multiple quality themes).
CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications.
ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality
Digital radiography exposure indices: A review
Digital radiography (DR) technologies have the advantage of a wide dynamic range compared to their film-screen predecessors, however, this poses a potential for increased patient exposure if left unchecked. Manufacturers have developed the exposure index (EI) to counter this, which provides radiographers with feedback on the exposure reaching the detector. As these EIs were manufacturer-specific, a wide variety of EIs existed. To offset this, the international standardised EI has been developed by the International Electrotechnical Commission (IEC) and the American Association of Physicists in Medicine (AAPM). The purpose of this article is to explore the current literature relating to EIs, beginning with the historical development of the EI, the development of the standardised EI and an exploration of common themes and studies as evidenced in the research literature. It is anticipated that this review will provide radiographers with a useful guide to understanding EIs, their application in clinical practice, limitations and suggestions for further research
