16 research outputs found

    New Insights in the Contribution of Voltage-Gated Nav Channels to Rat Aorta Contraction

    Get PDF
    BACKGROUND: Despite increasing evidence for the presence of voltage-gated Na(+) channels (Na(v)) isoforms and measurements of Na(v) channel currents with the patch-clamp technique in arterial myocytes, no information is available to date as to whether or not Na(v) channels play a functional role in arteries. The aim of the present work was to look for a physiological role of Na(v) channels in the control of rat aortic contraction. METHODOLOGY/PRINCIPAL FINDINGS: Na(v) channels were detected in the aortic media by Western blot analysis and double immunofluorescence labeling for Na(v) channels and smooth muscle alpha-actin using specific antibodies. In parallel, using real time RT-PCR, we identified three Na(v) transcripts: Na(v)1.2, Na(v)1.3, and Na(v)1.5. Only the Na(v)1.2 isoform was found in the intact media and in freshly isolated myocytes excluding contamination by other cell types. Using the specific Na(v) channel agonist veratridine and antagonist tetrodotoxin (TTX), we unmasked a contribution of these channels in the response to the depolarizing agent KCl on rat aortic isometric tension recorded from endothelium-denuded aortic rings. Experimental conditions excluded a contribution of Na(v) channels from the perivascular sympathetic nerve terminals. Addition of low concentrations of KCl (2-10 mM), which induced moderate membrane depolarization (e.g., from -55.9+/-1.4 mV to -45.9+/-1.2 mV at 10 mmol/L as measured with microelectrodes), triggered a contraction potentiated by veratridine (100 microM) and blocked by TTX (1 microM). KB-R7943, an inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger, mimicked the effect of TTX and had no additive effect in presence of TTX. CONCLUSIONS/SIGNIFICANCE: These results define a new role for Na(v) channels in arterial physiology, and suggest that the TTX-sensitive Na(v)1.2 isoform, together with the Na(+)/Ca(2+) exchanger, contributes to the contractile response of aortic myocytes at physiological range of membrane depolarization

    Karyotypic conservatism in samples of Characidium cf. zebra (Teleostei, Characiformes, Crenuchidae): Physical mapping of ribosomal genes and natural triploidy

    Get PDF
    Basic and molecular cytogenetic analyses were performed in specimens of Characidium cf. zebra from five collection sites located throughout the Tietê, Paranapanema and Paraguay river basins. The diploid number in specimens from all samples was 2n = 50 with a karyotype composed of 32 metacentric and 18 submetacentric chromosomes in both males and females. Constitutive heterochromatin was present at the centromeric regions of all chromosomes and pair 23, had additional interstitial heterochromatic blocks on its long arms. The nucleolar organizer regions (NORs) were located on the long arms of pair 23, while the 5S rDNA sites were detected in different chromosomes among the studied samples. One specimen from the Alambari river was a natural triploid and had two extra chromosomes, resulting in 2n = 77. The remarkable karyotypic similarity among the specimens of C. cf. zebra suggests a close evolutionary relationship. On the other hand, the distinct patterns of 5S rDNA distribution may be the result of gene flow constraints during their evolutionary history

    Characterization of alpha(2)-adrenoceptors in smooth muscles of the spontaneously hypertensive rat aorta

    No full text
    Previous works have shown that the alpha(2)-adrenoceptor agonist UK 14,304 induced the relaxation and hyperpolarization of the rat aorta, mediated by alpha(2)-adrenoceptors present in the smooth muscles, through small-conductance, ATP-sensitive K+ channels. We now report that in spontaneously hypertensive rat (SHR) aortic rings, UK 14,304 induced concentration-dependent hyperpolarizing responses, which were inhibited by yohimbine, an alpha2-adrenoceptor inhibitor, and by glibenclamide, a specific inhibitor of small-conductance, ATP-sensitive K+ channels. the responses were also partially inhibited by iberiotoxin and by apamin. Treatment with N-omega-nitro-L-arginine (L-NNA) did not affect the response to UK 14,304. These results indicate that alpha(2)-adrenoceptors are present in SHR aortic smooth muscle cell membranes, but differ from those of normotensive animals regarding the K+ channels involved in their responses. Moreover, the resting membrane potential (RMP) was significantly more negative in SHR than in normotensive rats. This relative hyperpolarized state is probably due to Cat(2+)-dependent K+ channels being constitutively open in SHR, since the addition of iberiotoxin caused a significant depolarization of the aortic smooth muscle membranes in this strain. (C) 2003 Elsevier Science Inc. All rights reserved.Universidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04023032 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04023032 São Paulo, SP, BrazilWeb of Scienc
    corecore