1,296 research outputs found
Sub-Doppler laser cooling of potassium atoms
We investigate sub-Doppler laser cooling of bosonic potassium isotopes, whose
small hyperfine splitting has so far prevented cooling below the Doppler
temperature. We find instead that the combination of a dark optical molasses
scheme that naturally arises in this kind of systems and an adiabatic ramping
of the laser parameters allows to reach sub-Doppler temperatures for small
laser detunings. We demonstrate temperatures as low as 25(3)microK and
47(5)microK in high-density samples of the two isotopes 39K and 41K,
respectively. Our findings will find application to other atomic systems.Comment: 7 pages, 9 figure
Expansion dynamics of a dipolar Bose-Einstein condensate
Our recent measurements on the expansion of a chromium dipolar condensate
after release from an optical trapping potential are in good agreement with an
exact solution of the hydrodynamic equations for dipolar Bose gases. We report
here the theoretical method used to interpret the measurement data as well as
more details of the experiment and its analysis. The theory reported here is a
tool for the investigation of different dynamical situations in time-dependent
harmonic traps.Comment: 12 pages. Submitted to PR
Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G
We developed a gravity-gradiometer based on atom interferometry for the
determination of the Newtonian gravitational constant \textit{G}. The
apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme
for fast launch of two atomic clouds, was specifically designed to reduce
possible systematic effects. We present instrument performances and show that
the sensor is able to detect the gravitational field induced by source masses.
A discussion of projected accuracy for \textit{G} measurement using this new
scheme shows that the results of the experiment will be significant to
discriminate between previous inconsistent values.Comment: 9 pages,9 figures, Submitte
Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction
We explore the interplay between tunneling and interatomic interactions in
the dynamics of a bosonic Josephson junction. We tune the scattering length of
an atomic K Bose-Einstein condensate confined in a double-well trap to
investigate regimes inaccessible to other superconducting or superfluid
systems. In the limit of small-amplitude oscillations, we study the transition
from Rabi to plasma oscillations by crossing over from attractive to repulsive
interatomic interactions. We observe a critical slowing down in the oscillation
frequency by increasing the strength of an attractive interaction up to the
point of a quantum phase transition. With sufficiently large initial
oscillation amplitude and repulsive interactions the system enters the
macroscopic quantum self-trapping regime, where we observe coherent undamped
oscillations with a self-sustained average imbalance of the relative well
population. The exquisite agreement between theory and experiments enables the
observation of a broad range of many body coherent dynamical regimes driven by
tunable tunneling energy, interactions and external forces, with applications
spanning from atomtronics to quantum metrology.Comment: 10 pages, 8 figures, supplemental materials are include
Structural connectivity and functional properties of the macaque superior parietal lobule
Despite the consolidated belief that the macaque superior parietal lobule (SPL) is entirely occupied by Brodmann’s area 5, recent data show that macaque SPL also hosts a large cortical region with structural and functional features similar to that of Brodmann’s area 7. According to these data, the anterior part of SPL is occupied by a somatosensory-dominated cortical region that hosts three architectural and functional distinct regions (PE, PEci, PEip) and the caudal half of SPL by a bimodal somato-visual region that hosts four areas: PEc, MIP, PGm, V6A. To date, the most studied areas of SPL are PE, PEc, and V6A. PE is essentially a high-order somatomotor area, while PEc and V6A are bimodal somatomotor–visuomotor areas, the former with predominant somatosensory input and the latter with predominant visual input. The functional properties of these areas and their anatomical connectivity strongly suggest their involvement in the control of limb movements. PE is suggested to be involved in the preparation/execution of limb movements, in particular, the movements of the upper limb; PEc in the control of movements of both upper and lower limbs, as well as in their interaction with the visual environment; V6A in the control of reach-to-grasp movements performed with the upper limb. In humans, SPL is traditionally considered to have a different organization with respect to macaques. Here, we review several lines of evidence suggesting that this is not the case, showing a similar structure for human and non-human primate SPLs
The role of hydropower in decarbonisation scenarios
An increased penetration of renewable energy sources is essential for the energy transition. A major role will be played by wind and solar, as they are widely available. Hydropower is another crucial resource, currently covering large shares of power generation (e.g., Norway, Italy, Brazil). Despite little expected growth, in a context of increasing electrification, improved integration of hydropower can play a critical role thanks to programmable operation. This work addresses the modelling of hydropower flexibility in energy system models and analyses the impact of hydropower operation on CO2 emission-constrained scenarios. To implement the study, a detailed dataset of the Italian programmable hydroelectric plants is created, using open-source information, covering location, rated power, and storage capacity. Inflow timeseries are derived from historical operational data. These new sets of data are employed in OMNI-ES (a multi-node, multi-sector, and multi-vector energy system model) to study optimal configurations and operation of the Italian energy system in decarbonisation scenarios, such as net-zero-CO2 and Fit-for-55 targets. Considering different operational strategies and multiple historical reference years (impacting the inflow), results demonstrate significant changes in hydropower behaviour and highlight its relevance as zero-carbon resource in terms of both power and energy output, influencing the installation of other technologies
- …