27 research outputs found

    Protective effect of sodium selenite on genotoxicity to human whole blood cultures induced by aflatoxin B1

    No full text
    The aim of this study was to investigate the effects of selenium and aflatoxin on human whole blood cultures (WBC) in relation to induction of sister-chromatid exchange (SCE). Results showed that the frequency of SCEs in peripheral lymphocytes was significantly increased by the direct-acting mutagen AFB1 (at doses 5 and 10 µM except for 1µM) compared with controls. When sodium selenite (Na2SeO3) was added at a molar ratio of 5x10-7 and 1x10-6, cells did not show significant increase in SCE frequency. Whereas, SCE rates induced by the various AFB1 concentrations could be significantly reduced by the presence of Na2SeO3 in a clear dose-related manner. These results indicated that selenite and AFB1 mutually antagonized their ability to cause DNA damage leading to the formation of SCEs. However, selenium didn't completely inhibit induction of SCEs by AFB1 compared with controls. AFB1 induced oxidative damage contributed to its genotoxicity in human WBC

    Protective effect of sodium selenite against the genotoxicity of aflatoxin B1 in human whole blood cultures

    No full text
    This study was designed to investigate the effects of selenium and aflatoxin on human whole blood cultures (WBC) in relation to induction of sister-chromatid exchange (SCE). The results showed that the frequency of SCEs in peripheral lymphocytes was significantly increased by the direct-acting mutagen AFB1 (at doses 5 and 10 µM except for 1µM) compared to controls. When sodium selenite (Na2SeO3) was added alone at a molar ratio of 5x10-7 and 1x10-6, cells did not show significant increase in SCE frequency. Whereas, SCE rates induced by the various AFB1 concentrations could be significantly reduced by the presence of Na2SeO3 in a clear dose-related manner. These results indicated that selenite and AFB1 mutually antagonized their ability to cause DNA damage leading to the formation of SCEs. However, selenium didn't completely inhibit induction of SCEs by AFB1 compared to controls. This is first report describing, the protective ability of selenium againist AFB1 genotoxicity on human WBC

    The effect of lithium tetraborate as a novel cardioprotective agent after renal ischemia-reperfusion injury

    No full text
    Epidemiological studies suggest that acute kidney injury has certain effect on myocardial function. In this study, for the first time, we tested a boron compound namely lithium tetraborate an act as an anti-oxidant and anti-inflammatory agent in ischemia-reperfusion injury. For this, we employed an in vivo rat model with kidney ischemia reperfusion injury to evaluate cardiac injury to clarify the mechanisms of lithium tetraborate. The evaluation of cardiac injury through kidney artery occlusion and reperfusion rat model indicated that lithium tetraborate could (1) reduce oxidative stress-induced endothelial dysfunction; (2) attenuate the inflammatory response of cardiac cells; and (3) alleviate the apoptosis and necrosis of myocytes. In summary, lithium tetraborate demonstrates significant therapeutic properties that contribute to the amelioration of cardiac damage, and it could be a promising candidate for future applications in myocardial dysfunction

    The effect of black mulberry (Morus nigra) extract on carbon tetrachloride-induced liver damage

    No full text
    In this study, the effect of Morus nigra (M. nigra) on carbon tetrachloride (CCI4)-induced hepatic injury in the rat was investigated. A hepatotoxic rat model was developed by the injection of CCI4 dissolved in soybean oil (1 mL/kg/twice a week, intraperitoneal (i.p.) injection). Following the formation of hepatic injury, extracts of M. nigra at doses ranging from 150 to 300 mg/kg were administered to rats by i.p. injection for eight weeks. At the end of administration, rat livers were excised by dissection. The activities of liver enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) were detected in the serum, and the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx), were established in the liver. Histological changes and immunohistochemical localization of caspase-3 and 8-oxo-2’-deoxyguanosine (8-OhdG) were performed by hematoxylin-eosin (H&E) staining of liver sections and caspase-3 and 8-OhdG immunohistochemical staining. The results showed that the M. nigra extract prevented protein oxidation generated by CCI4. The extracts demonstrated the ability to modulate the activity of SOD and GPx, and also prevented the CCI4-induced increase in AST and GGT levels. These results indicate that M. nigra extracts provided significant protection against CCl4-induced hepatic injury and might also present a novel approach for the treatment of some liver diseases

    Toxicological evaluation of submerged liquid culture from Phanerochaete chrysosporium mycelium on human blood cells: cytotoxicity, genotoxicity and oxidative damage

    No full text
    Mushrooms produce a variety of bioactive antioxidant secondary metabolites including ectins, polysaccharides, pigments, phenolic compounds, sterols and terpenes. Extracellular and intracellular compounds produced by submerged liquid fermentation are important industrially and economically. Phanerochaete chrysosporium (PC) is the model white-rot fungus that easy cultivation on lignocellulose-containing substrates. PC can be used as a bioprotein source. Aims of this study were to determine the in vitro antioxidant, cytotoxic and genotoxic effects of hot water extract obtained from PC on human peripheral blood monunuclear cells (hPBMCs). Cytotoxicity was determined by lactate dehydrogenase (LDH) leakeage assay and neutral red (NR). Total antioxidant capacity (TAC) and total oxidant status (TOS) were detected to determine the oxidative damage. Genotoxicity was characterized by micronuclei and chromosome aberrations assays for specify DNA damage. PC (5-75 µg/ml) significantly increased antioxidant capacity and these doses did not cause any significant alterations to cytotoxicity on hPBMCs. The elavated doses of PC (5-250 µg/ml) did not cause increase in genotoxic. Whereas, 250 and 500 µg/ml doses of PC statistically increased TOS levels, NR uptake, LDH release, CA/cell frequency and MN formation however decreased TAC levels. This study is the first time on cytotoxicity, genotoxicity and oxidative damage of PC on hPBMCs. In conclusion, the consumption of PC can be safe for humans, but it has also exposure period and dose-dependent effects on inducing oxidative damage and toxicity on hPBMCs

    Hepatoprotective Role of Thymol in Drug-Induced Gastric Ulcer Model

    No full text
    Introduction and aim. Indo is widely one of the non-steroidal anti-inflammatory drugs and one of the common toxic effects of this drug is hepatic failure. Thymol is a monoterpene phenol with many different pharmacological activities. However, up to now its hepatoprotective effects on Indo-induced gastric ulcer model in rats have not been explored yet.Material and methods. Thirty five Sprague-Dawley rats were divided into seven groups: control, ulcer control (30 mg/kg Indo), Indo + reference standard (50 mg/ kg Rantidine), Indo + Thymol (75, 100, 250 and 500 mg/kg) groups. 10 minutes after the induction of ulcer with Indo; Thymol was orally administered to the rats. Liver function enzymes (AST, ALT and LDH) were measured from serum samples. TOS/TAC, TNF-α and PGE2 levels, eNOS and Caspase-3 activity were assessed from tissue homogenate samples. In addition, histopathologic analysis on liver sections was performed.Results. Indo significantly increased the levels of hepatic enzymes, TNF-α and eNOS, and caspase-3 activation, while decreased PGE2 levels. Furthermore, it induced oxidative stress as evidenced by elevated TOS and decreased TAC levels. However, Thymol treatment induced a significant improvement in these parameters, especially in 250 mg/ kg dose. On the other hand, treatment with Thymol 500 mg/kg dramatically affected the parameters much worse than the Indo treated group.Conclusion. The findings of the current study demonstrated that Thymol administration significantly ameliorated liver injury due to Indo toxicity. This effect of Thymol (250 mg/kg) may be mediated by its anti-oxidative or anti-inflammatory effect, and up-regulation the synthesis of PGE2
    corecore