8 research outputs found

    James Webb Space Telescope XML Database: From the Beginning to Today

    Get PDF
    The James Webb Space Telescope (JWST) Project has been defining, developing, and exercising the use of a common eXtensible Markup Language (XML) for the command and telemetry (C&T) database structure. JWST is the first large NASA space mission to use XML for databases. The JWST project started developing the concepts for the C&T database in 2002. The database will need to last at least 20 years since it will be used beginning with flight software development, continuing through Observatory integration and test (I&T) and through operations. Also, a database tool kit has been provided to the 18 various flight software development laboratories located in the United States, Europe, and Canada that allows the local users to create their own databases. Recently the JWST Project has been working with the Jet Propulsion Laboratory (JPL) and Object Management Group (OMG) XML Telemetry and Command Exchange (XTCE) personnel to provide all the information needed by JWST and JPL for exchanging database information using a XML standard structure. The lack of standardization requires custom ingest scripts for each ground system segment, increasing the cost of the total system. Providing a non-proprietary standard of the telemetry and command database definition formation will allow dissimilar systems to communicate without the need for expensive mission specific database tools and testing of the systems after the database translation. The various ground system components that would benefit from a standardized database are the telemetry and command systems, archives, simulators, and trending tools. JWST has exchanged the XML database with the Eclipse, EPOCH, ASIST ground systems, Portable spacecraft simulator (PSS), a front-end system, and Integrated Trending and Plotting System (ITPS) successfully. This paper will discuss how JWST decided to use XML, the barriers to a new concept, experiences utilizing the XML structure, exchanging databases with other users, and issues that have been experienced in creating databases for the C&T system

    Standardization of XML Database Exchanges and the James Webb Space Telescope Experience

    Get PDF
    Personnel from the National Aeronautics and Space Administration (NASA) James Webb Space Telescope (JWST) Project have been working with various standard communities such the Object Management Group (OMG) and the Consultative Committee for Space Data Systems (CCSDS) to assist in the definition of a common extensible Markup Language (XML) for database exchange format. The CCSDS and OMG standards are intended for the exchange of core command and telemetry information, not for all database information needed to exercise a NASA space mission. The mission-specific database, containing all the information needed for a space mission, is translated from/to the standard using a translator. The standard is meant to provide a system that encompasses 90% of the information needed for command and telemetry processing. This paper will discuss standardization of the XML database exchange format, tools used, and the JWST experience, as well as future work with XML standard groups both commercial and government

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Evolution of the Lunar Network

    No full text
    The National Aeronautics and Space Administration (NASA) is planning to upgrade its network Infrastructure to support missions for the 21st century. The first step is to increase the data rate provided to science missions to at least the 100 megabits per second (Mbps) range. This is under way, using Ka-band 26 Gigahertz (GHz), erecting an 18-meter antenna for the Lunar Reconnaissance Orbiter (LRO), and the planned upgrade of the Deep Space Network (DSN) 34-meter network to support the James Webb Space Telescope (JWST). The next step is the support of manned missions to the Moon and beyond. Establishing an outpost with several activities such as rovers, colonization, and observatories, is better achieved by using a network configuration rather than the current method of point-to-point communication. Another challenge associated with the Moon is communication coverage with the Earth. The Moon's South Pole, targeted for human habitat and exploration, is obscured from Earth view for half of the 28-day lunar cycle and requires the use of lunar relay satellites to provide coverage when there is no direct view of the Earth. The future NASA and Constellation network architecture is described in the Space Communications Architecture Working Group (SCAWG) Report. The Space Communications and Navigation (SCAN) Constellation Integration Project (SCIP) is responsible for coordinating Constellation requirements and has assigned the responsibility for implementing these requirements to the existing NASA communication providers: DSN, Space Network (SN), Ground Network (GN) and the NASA Integrated Services Network (NISN). The SCAWG Report provides a future architecture but does not provide implementation details. The architecture calls for a Netcentric system, using hundreds of 12-meter antennas, a ground antenna array, and a relay network around the Moon. The report did not use cost as a variable in determining the feasibility of this approach. As part of the SCIP Mission Concept Review and the second iteration of the Lunar Architecture Team (LAT), the focus is on cost, as well as communication coverage using operational scenarios. This approach maximizes use of existing assets and adds capability in small increments. This paper addresses architecture decisions such as the Radio Frequency (RF) signal and network (Netcentric) decisions that need to be made and the difficulty of implementing them into the existing Space Network and DSN. It discusses the evolution of the lunar system and describes its components: Tracking and Data Relay Satellite System (TDRSS), Earth-based ground stations, Lunar Relay, and surface systems

    Selection of the Ground Segment for the Next Generation Space Telescope (NGST) Flight Demonstrator (Nexus)

    No full text
    Nexus was a technology demonstrator project that was designed to bridge from the Hubble Space Telescope (HST) to its successor, the Next Generation Space Telescope (NGST). This paper focuses on the process used in designing the ground segment for Nexus and the lessons learned in its development. Ground station cost drivers were: (1) Contact time, (2) Cost of transporting data between the ground stations and control center, and (3) Cost savings via ground automation. We found that reducing the communication requirement in just the first 100 days could have reduced the total ground station cost by 40%. Contact time cost dwarfed the cost trade between automation development and off-shift operations personnel. Real-time Telemetry and Control (T&C) system analysis was divided into: (1) Potential reuse of the Nexus real-time (T&C) system for NGST, (2) Feasibility of using a 'Finite State-Based Modeling' product, and (3) Selecting a Commercial Off the Shelf (COTS) versus Government Off The Shelf (GOTS) products. We found that each of the products evaluated in detail (ASIST, EPOCH 2000, and ITOS) could adequately support basic mission requirements. Lessons learned were: (1) Include operations at the beginning of the mission, and (2) Develop an operations concept as soon as possible

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore