12 research outputs found

    Development and validation of a repharsed phase- HPLC method for simultaneous determination of rosiglitazone and glimepiride in combined dosage forms and human plasma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rosiglitazone (ROZ) and glimepiride (GLM) are antidiabetic agents used in the treatment of type 2 diabetes mellitus. A survey of the literature reveals that only one spectrophotometric method has been reported for the simultaneous determination of ROS and GLM in pharmaceutical preparations. However the reported method suffers from the low sensitivity, for this reason, our target was to develop a simple sensitive HPLC method for the simultaneous determination of ROZ and GLM in their combined dosage forms and plasma.</p> <p>Results</p> <p>A simple reversed phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for the simultaneous determination of Rosiglitazone (ROS) and Glimepiride (GLM) in combined dosage forms and human plasma. The separation was achieved using a 150 mm × 4.6 mm i.d., 5 μm particle size Symmetry<sup>® </sup>C18 column. Mobile phase containing a mixture of acetonitrile and 0.02 M phosphate buffer of pH 5 (60: 40, V/V) was pumped at a flow rate of 1 mL/min. UV detection was performed at 235 nm using nicardipine as an internal standard. The method was validated for accuracy, precision, specificity, linearity, and sensitivity. The developed and validated method was successfully used for quantitative analysis of Avandaryl™ tablets. The chromatographic analysis time was approximately 7 min per sample with complete resolution of ROS (t<sub>R </sub>= 3.7 min.), GLM (t<sub>R </sub>= 4.66 min.), and nicardipine (t<sub>R</sub>, 6.37 min). Validation studieswas performed according to ICH Guidelines revealed that the proposed method is specific, rapid, reliable and reproducible. The calibration plots were linear over the concentration ranges 0.10-25 μg/mL and 0.125-12.5 μg/mL with LOD of 0.04 μg/mL for both compounds and limits of quantification 0.13 and 0.11 μg/mL for ROS and GLM respectively.</p> <p>Conclusion</p> <p>The suggested method was successfully applied for the simultaneous analysis of the studied drugs in their co-formulated tablets and human plasma. The mean percentage recoveries in Avandaryl™ tablets were 100.88 ± 1.14 and 100.31 ± 1.93 for ROS and GLM respectively. Statistical comparison of the results with those of the reference method revealed good agreement and proved that there were no significant difference in the accuracy and precision between the two methods respectively. The interference likely to be introduced from some co-administered drugs such as glibenclamide, gliclazide, metformine, pioglitazone and nateglinide was investigated.</p

    Spectrophotometric determination of tizanidine and orphenadrine via ion pair complex formation using eosin Y

    Get PDF
    A simple, sensitive and rapid spectrophotometric method was developed and validated for the determination of two skeletal muscle relaxants namely, tizanidine hydrochloride (I) and orphenadrine citrate (II) in pharmaceutical formulations. The proposed method is based on the formation of a binary complex between the studied drugs and eosin Y in aqueous buffered medium (pH 3.5). Under the optimum conditions, the binary complex showed absorption maxima at 545 nm for tizanidine and 542 nm for orphenadrine. The calibration plots were rectilinear over concentration range of 0.5-8 μg/mL and 1-12 μg/mL with limits of detection of 0.1 μg/mL and 0.3 μg/mL for tizanidine and orphenadrine respectively. The different experimental parameters affecting the development and stability of the complex were studied and optimized. The method was successfully applied for determination of the studied drugs in their dosage forms; and to the content uniformity test of tizanidine in tablets

    Simultaneous HPLC Determination of Chlordiazepoxide and Mebeverine HCl in the Presence of Their Degradation Products and Impurities

    No full text
    A simple, rapid, and sensitive RP-HPLC method was developed and validated for the simultaneous determination of chlordiazepoxide (CDO) and mebeverine HCl (MBV) in the presence of CDO impurity (2-amino-5-chlorobenzophenone, ACB) and MBV degradation product (veratric acid, VER). Separation was achieved within 9 min on a BDS Hypersil phenyl column (4.5 mm × 250 mm, 5 µm particle size) using a mobile phase consisting of acetonitrile: 0.1 M potassium dihydrogen phosphate: triethylamine (35 : 65 : 0.2, v/v/v) in an isocratic mode at a flow rate of 1 mL/min. The pH of the mobile phase was adjusted to 4.5 with orthophosphoric acid and UV detection was set at 260 nm. A complete validation procedure was conducted. The proposed method exhibited excellent linearity over the concentration ranges of 1.0–100.0, 10.0–200.0, 2.0–40.0, and 2.0–40.0 µg/mL for CDO, MBV, VER, and ACB, respectively. The proposed method was applied for the simultaneous determination of CDO and MBV in their coformulated tablets with mean percentage recoveries of 99.75 ± 0.62 and 98.61 ± 0.38, respectively. The results of the proposed method were favorably compared with those of a comparison HPLC method using Student t-test and the variance ratio F-test. The chemical structure of MBV degradation product was ascertained by mass spectrometry and IR studies

    Two different synchronous spectrofluorimetric approaches for simultaneous determination of febuxostat and ibuprofen

    No full text
    Two green, simple and sensitive synchronous spectrofluorimetric methods were developed for the first time for the simultaneous estimation of febuxostat (FEB) and ibuprofen (IBU). Method I is constant-wavelength synchronous spectrofluorimetry where FEB and IBU were recorded at 329 and 258 nm, respectively, using Δλ of 40 nm. Method II is constant-energy synchronous spectrofluorimetry using a wavenumber interval of −4000 cm−1. All measurements were carried out in a borate buffer of pH 7 and distilled water for dilution which increased the methods' greenness. The two methods were rectilinear over concentration ranges of 30.0–700.0 ng ml−1 and 0.5–9.0 µg ml−1 in the first method and 20.0–500.0 ng ml−1 and 0.1–8.0 µg ml−1 in the second method for FEB and IBU, respectively. High sensitivity was attained for the two drugs with limits of quantitations (LODs) down to 0.41 and 5.51 ng ml−1 in the first method and 0.25 and 3.32 ng ml−1 in the second method for FEB and IBU, respectively. Recovery percentages were in the range of 97.3–101.9% after extraction from spiked human plasma samples, demonstrating high bioanalytical applicability. The two methods were further applied to tablet dosage forms with good recovery results. The methods' greenness was assessed according to the analytical Eco-Scale and Green Analytical Procedure Index guidelines

    Micellar high performance liquid chromatographic determination of flunixin meglumine in bulk, pharmaceutical dosage forms, bovine liver and kidney

    Get PDF
    A simple, sensitive and rapid liquid chromatographic method was developed and validated for the analysis of flunixin meglumine (flunixin-M) in bulk, pharmaceutical dosage forms, bovine liver and kidney. Analytical separation was performed in less than 4 min using a C18 column with UV detection at 284 nm. A micellar solution composed of 0.15 M sodium dodecyl sulphate, 8% n-butanol and 0.3% triethylamine in 0.02 M phosphoric acid buffered at pH 7.0 was used as the mobile phase. The method was fully validated in accordance with the International Conference on Harmonization (ICH) guidelines. The limit of detection and the limit of quantitation were 0.02 and 0.06 μg mL−1, respectively. The recoveries obtained were in range of 95.58–106.94% for bovine liver and kidney. High extraction efficiency was obtained without matrix interference in the extraction process and in the subsequent chromatographic determination. The method showed good repeatability, linearity and sensitivity according to the evaluation of the validation parameters
    corecore