18 research outputs found

    On the Size and Flight Diversity of Giant Pterosaurs, the Use of Birds as Pterosaur Analogues and Comments on Pterosaur Flightlessness

    Get PDF
    The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors interpreting pterosaur flight mechanics. Such assumptions have lead to assertions that giant pterosaurs were extremely lightweight to facilitate flight or, if more realistic masses are assumed, were flightless. Reappraisal of the proportions, scaling and morphology of giant pterosaur fossils suggests that bird and pterosaur wing structure, gross anatomy and launch kinematics are too different to be considered mechanically interchangeable. Conclusions assuming such interchangeability—including those indicating that giant pterosaurs were flightless—are found to be based on inaccurate and poorly supported assumptions of structural scaling and launch kinematics. Pterosaur bone strength and flap-gliding performance demonstrate that giant pterosaur anatomy was capable of generating sufficient lift and thrust for powered flight as well as resisting flight loading stresses. The retention of flight characteristics across giant pterosaur skeletons and their considerable robustness compared to similarly-massed terrestrial animals suggest that giant pterosaurs were not flightless. Moreover, the term ‘giant pterosaur’ includes at least two radically different forms with very distinct palaeoecological signatures and, accordingly, all but the most basic sweeping conclusions about giant pterosaur flight should be treated with caution. Reappraisal of giant pterosaur material also reveals that the size of the largest pterosaurs, previously suggested to have wingspans up to 13 m and masses up to 544 kg, have been overestimated. Scaling of fragmentary giant pterosaur remains have been misled by distorted fossils or used inappropriate scaling techniques, indicating that 10–11 m wingspans and masses of 200–250 kg are the most reliable upper estimates of known pterosaur size

    Chapter 3: Bifunctional and Supramolecular Organocatalysts for Polymerization

    No full text
    Bimolecular, H-bond mediated catalysts for ring-opening polymerization (ROP) - thiourea or urea plus base, squaramides and protic acid/base pairs, among others - are unified in a conceptual approach of applying a mild Lewis acid plus mild Lewis base to effect ROP. The bimolecular, and other supramolecular catalysts for ROP, produce among the best-defined materials available via synthetic polymer chemistry through a delicately balanced series of competing chemical reactions by interacting with substrate at an energy of \u3c4 kcal mol-1. These catalysts are among the most controlled available for ROP. Part of this arises from the modular, highly tunable nature of dual catalysts, which conduct extremely controlled ROP of a host of cyclic monomers. The broader field of organocatalytic polymerization is a bridge between the disparate worlds of the materials chemist (ease of use) and the synthetic polymer chemist (mechanistic interest). The cooperative and collegial nature of the organocatalysis for the ROP community has facilitated the synergistic evolution of new mechanism to new abilities - in monomer scope, polymer architecture and level of reaction control

    H-Bonding Organocatalysts for Ring-Opening Polymerization at Elevated Temperatures

    No full text
    The ring-opening polymerization (ROP) kinetics of ϵ-caprolactone and lactide with various H-bonding organocatalysts, (thio)ureas paired with an amine cocatalyst, were evaluated at temperatures up to 110 °C. In nonpolar solvent, most cocatalyst systems exhibit decomposition at high temperatures, while only two, a monourea and bis-urea H-bond donor plus base cocatalyst, are stable up to 110 °C. The onset temperature of cocatalyst decomposition must be measured under reaction conditions. In polar solvent, when the more active imidate form of the (thio)urea is favored, most cocatalyst systems become thermally stable up to 110 °C, exhibiting linear Eyring behavior, including some that were unstable in toluene. The very progress of an ROP is shown to influence the nature of the catalysts as the solution polarity changes from highly polar (at 0% conversion) to less polar at full conversion. Activation parameters are discussed, and a mechanistic explanation of the observations is proposed

    A structural comparative approach to identifying novel antimalarial inhibitors

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)NatuurwetenskappeChemie & Polimeerwetenska

    H‑Bonding Organocatalysts for the Living, Solvent-Free Ring-Opening Polymerization of Lactones: Toward an All-Lactones, All-Conditions Approach

    No full text
    The developing urea class of H-bond donors facilitates the solvent-free ROP of lactones at ambient and elevated temperatures, displaying enhanced rates and control versus other known organocatalysts for ROP under solvent-free conditions. The ROPs retain the characteristics of living polymerizations despite solidifying prior to full conversion, and copolymers can be accessed in a variety of architectures. One-pot block copolymerizations of lactide and valerolactone, which had previously been inaccessible in solution phase organocatalytic ROP, can be achieved under these reaction conditions, and one-pot triblock copolymers are also synthesized. For the ROP of lactide, however, thioureas remain the more effective H-bond donating class. For all (thio)­urea catalysts under solvent-free conditions and in solution, the more active catalysts are generally more controlled. A rationale for these observations is proposed. The triclocarban (TCC) plus base systems are particularly attractive in the context of solvent-free ROP due to their commercial availability which could facilitate the adoption of these catalysts

    Bis- and Tris-Urea H‑Bond Donors for Ring-Opening Polymerization: Unprecedented Activity and Control from an Organocatalyst

    No full text
    A new class of H-bond donating ureas was developed for the ring-opening polymerization (ROP) of lactone monomers, and they exhibit dramatic rate acceleration versus previous H-bond mediated polymerization catalysts. The most active of these new catalysts, a tris-urea H-bond donor, is among the most active organocatalysts known for ROP, yet it retains the high selectivity of H-bond mediated organocatalysts. The urea cocatalyst, along with an H-bond accepting base, exhibits the characteristics of a “living” ROP, is highly active, in one case, accelerating a reaction from days to minutes, and remains active at low catalyst loadings. The rate acceleration exhibited by this H-bond donor occurs for all base cocatalysts examined. A mechanism of action is proposed, and the new catalysts are shown to accelerate small molecule transesterifications versus currently known monothiourea catalysts. It is no longer necessary to choose between a highly active or highly selective organocatalyst for ROP

    Coupled equilibria in H-bond donating ring-opening polymerization: The effective catalyst-determined shift of a polymerization equilibrium

    No full text
    In the classic view of catalysis, a catalyst cannot alter the thermodynamically-determined endpoint of a reversible reaction. This conclusion is predicated on the assumption that the catalyst does not perturb the energy of product or reactant or does so to an equal extent. In the H-bond mediated ring-opening polymerization (ROP) of lactone monomers, the strength of the interactions of thiourea with product and reactant are not equal, and the magnitudes of these interactions are of similar energy to the free energy of reaction. The total monomer concentration at equilibrium in the thiourea/base cocatalyzed ROP of lactones is shown to be a function of the initial concentration of thiourea. Because the binding of thiourea to monomer and the polymerization reaction itself are both reversible, the application of varying amounts of thiourea catalyst directly alters the total amount of monomer in the reaction solution at equilibrium, which can be recovered at the end of the reaction
    corecore