20 research outputs found
Maximizing the Probability of Arriving on Time: A Practical Q-Learning Method
The stochastic shortest path problem is of crucial importance for the development of sustainable transportation systems. Existing methods based on the probability tail model seek for the path that maximizes the probability of arriving at the destination before a deadline. However, they suffer from low accuracy and/or high computational cost. We design a novel Q-learning method where the converged Q-values have the practical meaning as the actual probabilities of arriving on time so as to improve accuracy. By further adopting dynamic neural networks to learn the value function, our method can scale well to large road networks with arbitrary deadlines. Experimental results on real road networks demonstrate the significant advantages of our method over other counterparts
Multiagent-based route guidance for increasing the chance of arrival on time
Transportation and mobility are central to sustainable urban development, where multiagent-based route guidance is widely applied. Traditional multiagent-based route guidance always seeks LET (least expected travel time) paths. However, drivers usually have specific expectations, i.e., tight or loose deadlines, which may not be all met by LET paths. We thus adopt and extend the probability tail model that aims to maximize the probability of reaching destinations before deadlines. Specifically, we propose a decentralized multiagent approach, where infrastructure agents locally collect intentions of concerned vehicle agents and formulate route guidance as a route assignment problem, to guarantee their arrival on time. Experimental results on real road networks justify its ability to increase the chance of arrival on time