52 research outputs found
Patterns of Genome Evolution among the Microsporidian Parasites Encephalitozoon cuniculi, Antonospora locustae and Enterocytozoon bieneusi
Microsporidia are intracellular parasites that are highly-derived relatives of fungi. They have compacted genomes and, despite a high rate of sequence evolution, distantly related species can share high levels of gene order conservation. To date, only two species have been analysed in detail, and data from one of these largely consists of short genomic fragments. It is therefore difficult to determine how conservation has been maintained through microsporidian evolution, and impossible to identify whether certain regions are more prone to genomic stasis.Here, we analyse three large fragments of the Enterocytozoon bieneusi genome (in total 429 kbp), a species of medical significance. A total of 296 ORFs were identified, annotated and their context compared with Encephalitozoon cuniculi and Antonospora locustae. Overall, a high degree of conservation was found between all three species, and interestingly the level of conservation was similar in all three pairwise comparisons, despite the fact that A. locustae is more distantly related to E. cuniculi and E. bieneusi than either are to each other.Any two genes that are found together in any pair of genomes are more likely to be conserved in the third genome as well, suggesting that a core of genes tends to be conserved across the entire group. The mechanisms of rearrangments identified among microsporidian genomes were consistent with a very slow evolution of their architecture, as opposed to the very rapid sequence evolution reported for these parasites
Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review
Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM1). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed
Anti-CD3 Antibody Ameliorates Transfusion-Associated Graft-Versus-Host Disease in a Chemotherapy-Based Mouse Model With Busulfan and Fludarabine
Transfusion-transmitted infections
Although the risk of transfusion-transmitted infections today is lower than ever, the supply of safe blood products remains subject to contamination with known and yet to be identified human pathogens. Only continuous improvement and implementation of donor selection, sensitive screening tests and effective inactivation procedures can ensure the elimination, or at least reduction, of the risk of acquiring transfusion transmitted infections. In addition, ongoing education and up-to-date information regarding infectious agents that are potentially transmitted via blood components is necessary to promote the reporting of adverse events, an important component of transfusion transmitted disease surveillance. Thus, the collaboration of all parties involved in transfusion medicine, including national haemovigilance systems, is crucial for protecting a secure blood product supply from known and emerging blood-borne pathogens
Immune responses to major histocompatibility complex homozygous lymphoid cells in murine F1 hybrid recipients: implications for transfusion-associated graft-versus-host disease
Graft-versus-host disease (GVHD) is currently encountered after bone marrow transplantation and transfusion. GVHD associated with transfusion (TA-GVHD) in apparently immunocompetent recipients has been recently reported with increasing frequency. A consistent finding in many of these cases is that the recipient received blood from a donor homozygous for one of the recipient's HLA haplotypes. However, the observed frequency of TA-GVHD is much lower than the estimated probability of this donor/recipient combination. The potential role of recipient immune responses in controlling TA-GVHD was investigated using an analogous murine model in which GVHD is induced by the injection of parental lymphoid cells into unirradiated F1 hybrid recipients. The effect of various immune manipulations of the recipient of GVHD induction was assessed by determining the number of donor lymphoid cells required to induce GVHD responses. Whereas depletion of recipient CD4+ cells increased the number of donor cells needed to induce GVHD, depletion of recipient CD8+ and natural killer cells resulted in fewer donor cells being needed to induce a GVHD response. These studies suggest a central role for functioning recipient CD8 and natural killer cells in the down-regulation of TA-GVHD development in recipients.</jats:p
Immune responses to major histocompatibility complex homozygous lymphoid cells in murine F1 hybrid recipients: implications for transfusion-associated graft-versus-host disease
Abstract
Graft-versus-host disease (GVHD) is currently encountered after bone marrow transplantation and transfusion. GVHD associated with transfusion (TA-GVHD) in apparently immunocompetent recipients has been recently reported with increasing frequency. A consistent finding in many of these cases is that the recipient received blood from a donor homozygous for one of the recipient's HLA haplotypes. However, the observed frequency of TA-GVHD is much lower than the estimated probability of this donor/recipient combination. The potential role of recipient immune responses in controlling TA-GVHD was investigated using an analogous murine model in which GVHD is induced by the injection of parental lymphoid cells into unirradiated F1 hybrid recipients. The effect of various immune manipulations of the recipient of GVHD induction was assessed by determining the number of donor lymphoid cells required to induce GVHD responses. Whereas depletion of recipient CD4+ cells increased the number of donor cells needed to induce GVHD, depletion of recipient CD8+ and natural killer cells resulted in fewer donor cells being needed to induce a GVHD response. These studies suggest a central role for functioning recipient CD8 and natural killer cells in the down-regulation of TA-GVHD development in recipients.</jats:p
Immune responses to major histocompatibility complex homozygous lymphoid cells in murine F1 hybrid recipients: implications for transfusion-associated graft-versus-host disease
Immune responses to major histocompatibility complex homozygous lymphoid cells in murine F1 hybrid recipients: implications for transfusion-associated graft-versus-host disease
Immunologic status of hemophilia patients treated with cryoprecipitate or lyophilized concentrate
We evaluated 37 patients with moderate or severe hemophilia A and six patients with severe factor IX deficiency for clinical or laboratory evidence of immune abnormalities. Patients were assigned to one of four groups according to the type of clotting factor replacement. Twenty patients had received only cryoprecipitate during the two years preceding the evaluation (group I); 11 additional patients were treated predominantly with cryoprecipitate but had also received up to nine bottles of factor VIII concentrate (group II); six patients received factor VIII concentrate (group III); six patients received factor IX concentrate (group IV). There was no clinical or laboratory evidence of immunodeficiency among the 43 patients. The mean absolute number of Th cells was normal in all patient groups, but the mean absolute number of Ts cells was increased compared with controls, both in patients treated with cryoprecipitate and in patients treated with factor VIII or factor IX concentrate. There was no correlation between the Th/Ts ratio and patient age, alanine aminotransferase level, hepatitis serology, in vitro lymphocyte function, or amount of clotting factor administered. Our observations demonstrate that the volunteer or commercial origin of clotting factor replacement cannot fully explain the alterations in lymphocyte subset distribution previously described in patients with hemophilia A.</jats:p
- …
