2,569 research outputs found

    CANOZE measurements of the Arctic ozone hole

    Get PDF
    In CANOZE 1 (Canadian Ozone Experiment), a series of 20 ozone profile measurements were made in April, 1986 from Alert at 82.5 N. CANOZE is the Canadian program for study of the Arctic winter ozone layer. In CANOZE 2, ozone profile measurements were made at Saskatoon, Edmonton, Churchill and Resolute during February and March, 1987 with ECC ozonesondes. Ground based measurements of column ozone, nitrogen dioxide and hydrochloric acid were conducted at Saskatoon. Two STRATOPROBE balloon flights were conducted on February 26 and March 19, 1987. Two aerosol flights were conducted by the University of Wyoming. The overall results of this study will be reported and compared with the NOZE findings. The results from CANOZE 3 in 1988, are also discussed. In 1988, as part of CANOZE 3, STRATOPROBE balloon flights were conducted from Saskatchewan on January 27 and February 13. A new lightweight infrared instrument was developed and test flown. A science flight was successfully conducted from Alert (82.5 N) on March 9, 1988 when the vortex was close to Alert; a good measurement of the profile of nitric acid was obtained. Overall, the Arctic spring ozone layer exhibits many of the features of the Antarctic ozone phenomenon, although there is obviously not a hole present every year. The Arctic ozone field in March, 1986 demonstrated many similarities to the Antarctic ozone hole. The TOMS imagery showed a crater structure in the ozone field similar to the Antarctic crater in October. Depleted layers of ozone were found in the profiles around 15 km, very similar to those reported from McMurdo. Enhanced levels of nitric acid were measured in air which had earlier been in the vortex. The TOMS imagery for March 1987 did not show an ozone crater, but will be examined for an ozone crater in February and March, 1988, the target date for the CANOZE 3 project

    Active cooling control of the CLEO detector using a hydrocarbon coolant farm

    Full text link
    We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the system's performance and point out the potential application of the design to future high-energy physics apparatus.Comment: 21 pages, LaTeX, 5 PostScript figures; version accepted for publication in Nuclear Instruments and Methods in Physics Research

    Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study

    Get PDF
    BACKGROUND AND PURPOSE: Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. MATERIAL AND METHODS: Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. RESULTS: Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: â©ľ0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. CONCLUSION: Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance

    An Intercomparison of Ground-based Solar FTIR Measurements of Atmospheric Gases at Eureka, Canada

    Get PDF
    We report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2) and nitrogen (N2) derived from the spectra recorded by two ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the sun as a source. The procedure used to record spectra and derive vertical column amounts follows the format of previous instrument intercomparisons organised by the Network for Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for Detection of Stratospheric Change (NDSC). For most gases the differences were typically around 3% and in about half of the results the error bars given by the standard deviation of the measurements from each instrument did not overlap. The worst level of agreement was for HF where differences of over 5% were typical. The level of agreement achieved during this intercomparison is a little worse than that achieved in previous intercomparisons between ground-based FTIR spectrometers

    Electrical Properties of Carbon Fiber Support Systems

    Full text link
    Carbon fiber support structures have become common elements of detector designs for high energy physics experiments. Carbon fiber has many mechanical advantages but it is also characterized by high conductivity, particularly at high frequency, with associated design issues. This paper discusses the elements required for sound electrical performance of silicon detectors employing carbon fiber support elements. Tests on carbon fiber structures are presented indicating that carbon fiber must be regarded as a conductor for the frequency region of 10 to 100 MHz. The general principles of grounding configurations involving carbon fiber structures will be discussed. To illustrate the design requirements, measurements performed with a silicon detector on a carbon fiber support structure at small radius are presented. A grounding scheme employing copper-kapton mesh circuits is described and shown to provide adequate and robust detector performance.Comment: 20 pages, 11 figures, submitted to NI

    On the appearance of Mach bands in gradients of varying color

    Full text link
    Red and green triangular-wave intensity distributions were generated on cathoderay oscilloscope tubes. When these patterns are viewed separately, light and dark Mach bands appear at the peaks and troughs of the intensity distribution. The perceived brightness distribution was quantified by matching the brightness of the pattern with a narrow slit of light of the same color positioned in varying positions just below the triangular-wave field. The sensations produced by gradients of color rather than luminance have been investigated by interlacing equiluminous red and green triangular gratings 180[deg] out-of-phase (dark bands in one field correspond to bright bands in other field). An illuminated slit just below the chromatic gradients was adjusted in color and brightness to produce satisfactory matches to different parts of the interlaced red and green patterns. Our measurements show that bright red and green bands appear in light distributions of constant luminance and varying chromaticity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33564/1/0000065.pd

    Mode-coupling approach to non-Newtonian Hele-Shaw flow

    Full text link
    The Saffman-Taylor viscous fingering problem is investigated for the displacement of a non-Newtonian fluid by a Newtonian one in a radial Hele-Shaw cell. We execute a mode-coupling approach to the problem and examine the morphology of the fluid-fluid interface in the weak shear limit. A differential equation describing the early nonlinear evolution of the interface modes is derived in detail. Owing to vorticity arising from our modified Darcy's law, we introduce a vector potential for the velocity in contrast to the conventional scalar potential. Our analytical results address how mode-coupling dynamics relates to tip-splitting and side branching in both shear thinning and shear thickening cases. The development of non-Newtonian interfacial patterns in rectangular Hele-Shaw cells is also analyzed.Comment: 14 pages, 5 ps figures, Revtex4, accepted for publication in Phys. Rev.
    • …
    corecore