330 research outputs found
TDCOSMO XIV: Practical Techniques for Estimating External Convergence of Strong Gravitational Lens Systems and Applications to the SDSS J0924+0219 System
Time-delay cosmography uses strong gravitational lensing of a time-variable
source to infer the Hubble Constant. The measurement is independent from both
traditional distance ladder and CMB measurements. An accurate measurement with
this technique requires considering the effects of objects along the line of
sight outside the primary lens, which is quantified by the external convergence
(). In absence of such corrections, will be biased
towards higher values in overdense fields and lower values in underdense
fields. We discuss the current state of the methods used to account for
environment effects. We present a new software package built for this kind of
analysis and others that can leverage large astronomical survey datasets. We
apply these techniques to the SDSS J0924+0219 strong lens field. We infer the
relative density of the SDSS J0924+0219 field by computing weighted number
counts for all galaxies in the field, and comparing to weighted number counts
computed for a large number of fields in a reference survey. We then compute
weighted number counts in the Millennium Simulation and compare these results
to infer the external convergence of the lens field.Results. Our results show
the SDSS J0924+0219 field is a fairly typical line of sight, with median
and standard deviation .Comment: Submitted to A&A. 10 pages, 5 figure
Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation
The flux ratios in the multiple images of gravitationally lensed quasars can
provide evidence for dark matter substructure in the halo of the lensing galaxy
if the flux ratios differ from those predicted by a smooth model of the lensing
galaxy mass distribution. However, it is also possible that baryonic structures
in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies.
In this work, we present the first statistical analysis of flux-ratio anomalies
due to baryons from a numerical simulation perspective. We select galaxies with
various morphological types in the Illustris simulation and ray-trace through
the simulated halos, which include baryons in the main lensing galaxies but
exclude any substructures, in order to explore the pure baryonic effects. Our
ray-tracing results show that the baryonic components can be a major
contribution to the flux-ratio anomalies in lensed quasars and that edge-on
disc lenses induce the strongest anomalies. We find that the baryonic
components increase the probability of finding high flux-ratio anomalies in the
early-type lenses by about 8% and by about 10 - 20% in the disc lenses. The
baryonic effects also induce astrometric anomalies in 13% of the mock lenses.
Our results indicate that the morphology of the lens galaxy becomes important
in the analysis of flux-ratio anomalies when considering the effect of baryons,
and that the presence of baryons may also partially explain the discrepancy
between the observed (high) anomaly frequency and what is expected due to the
presence of subhalos as predicted by the CDM simulations.Comment: 16 pages, 11 figures, accepted by MNRA
Automated detection of galaxy-scale gravitational lenses in high resolution imaging data
Lens modeling is the key to successful and meaningful automated strong
galaxy-scale gravitational lens detection. We have implemented a lens-modeling
"robot" that treats every bright red galaxy (BRG) in a large imaging survey as
a potential gravitational lens system. Using a simple model optimized for
"typical" galaxy-scale lenses, we generate four assessments of model quality
that are used in an automated classification. The robot infers the lens
classification parameter H that a human would have assigned; the inference is
performed using a probability distribution generated from a human-classified
training set, including realistic simulated lenses and known false positives
drawn from the HST/EGS survey. We compute the expected purity, completeness and
rejection rate, and find that these can be optimized for a particular
application by changing the prior probability distribution for H, equivalent to
defining the robot's "character." Adopting a realistic prior based on the known
abundance of lenses, we find that a lens sample may be generated that is ~100%
pure, but only ~20% complete. This shortfall is due primarily to the
over-simplicity of the lens model. With a more optimistic robot, ~90%
completeness can be achieved while rejecting ~90% of the candidate objects. The
remaining candidates must be classified by human inspectors. We are able to
classify lens candidates by eye at a rate of a few seconds per system,
suggesting that a future 1000 square degree imaging survey containing 10^7
BRGs, and some 10^4 lenses, could be successfully, and reproducibly, searched
in a modest amount of time. [Abridged]Comment: 17 pages, 11 figures, submitted to Ap
SHARP -- VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars
We present an analysis of seven strongly gravitationally lensed quasars and
the corresponding constraints on the properties of dark matter. Our results are
derived by modelling the lensed image positions and flux-ratios using a
combination of smooth macro models and a population of low-mass haloes within
the mass range 10^6 to 10^9 Msun. Our lens models explicitly include
higher-order complexity in the form of stellar discs and luminous satellites,
as well as low-mass haloes located along the observed lines of sight for the
first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average
total mass fraction in substructure of f_sub = 0.012^{+0.007}_{-0.004} (68 per
cent confidence limits), which is in agreement with the predictions from CDM
hydrodynamical simulations to within 1 sigma. This result is closer to the
predictions than those from previous studies that did not include line-of-sight
haloes. Under the assumption of a thermal relic dark matter model, we derive a
lower limit on the particle relic mass of m th > 5.58 keV (95 per cent
confidence limits), which is consistent with a value of m_th > 5.3 keV from the
recent analysis of the Ly-alpha forest. We also identify two main sources of
possible systematic errors and conclude that deeper investigations in the
complex structure of lens galaxies as well as the size of the background
sources should be a priority for this field.Comment: 14 pages, 7 figures, accepted for publication in MNRA
Keck Spectroscopy of Three Gravitational Lens Systems Discovered in the JVAS and CLASS Surveys
We present spectra of three gravitational lens systems taken with the Low
Resolution Imaging Spectrograph on the W. M. Keck Telescopes. All of the
systems were discovered in the JVAS and CLASS radio surveys, which were
designed to find lenses suitable for measuring . Previous spectra of these
systems had low signal-to-noise ratios, and only one of the source redshifts
was secure. Our observations give unambiguous lens and source redshifts for all
of the systems, with (, ) = (0.4060,1.339), (0.5990,1.535) and
(0.4144,1.589) for B0712+472, B1030+074 and B1600+434, respectively. The
observed image splittings in the systems imply that the masses of the lensing
galaxies within their Einstein rings are 5.4, 1.2, and 6.3\times 10^{10} h^{-1} M_{\sun}. The resulting V-band
mass-to-light ratios for B0712+472 and B1030+074, measured inside their
Einstein ring radii, are \sim 10h (M/L)_{\sun, V}, slightly higher than
values observed in nearby ellipticals. For B1600+434, the mass-to-light ratio
is 48h (M/L)_{\sun, V}. This high value can be explained, at least in part,
by the prominent dust lane running through the galaxy. Two of the three lens
systems show evidence of variability, so monitoring may yield a time delay and
thus a measurement of .Comment: 8 pages, 5 Postscript Figures, uses aastex. To appear in A.
The Properties of Radio Galaxies and the Effect of Environment in Large Scale Structures at
In this study we investigate 89 radio galaxies that are
spectroscopically-confirmed to be members of five large scale structures in the
redshift range of . Based on a two-stage classification
scheme, the radio galaxies are classified into three sub-classes: active
galactic nucleus (AGN), hybrid, and star-forming galaxy (SFG). We study the
properties of the three radio sub-classes and their global and local
environmental preferences. We find AGN hosts are the most massive population
and exhibit quiescence in their star-formation activity. The SFG population has
a comparable stellar mass to those hosting a radio AGN but are unequivocally
powered by star formation. Hybrids, though selected as an intermediate
population in our classification scheme, were found in almost all analyses to
be a unique type of radio galaxies rather than a mixture of AGN and SFGs. They
are dominated by a high-excitation radio galaxy (HERG) population. We discuss
environmental effects and scenarios for each sub-class. AGN tend to be
preferentially located in locally dense environments and in the cores of
clusters/groups, with these preferences persisting when comparing to galaxies
of similar colour and stellar mass, suggesting that their activity may be
ignited in the cluster/group virialized core regions. Conversely, SFGs exhibit
a strong preference for intermediate-density global environments, suggesting
that dusty starbursting activity in LSSs is largely driven by galaxy-galaxy
interactions and merging.Comment: 28 pages, 10 figures, accepted to MNRA
H0LiCOW III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts
Based on spectroscopy and multiband wide-field observations of the
gravitationally lensed quasar HE 0435-1223, we determine the probability
distribution function of the external convergence for
this system. We measure the under/overdensity of the line of sight towards the
lens system and compare it to the average line of sight throughout the
universe, determined by using the CFHTLenS as a control field. Aiming to
constrain as tightly as possible, we determine
under/overdensities using various combinations of relevant informative weighing
schemes for the galaxy counts, such as projected distance to the lens,
redshift, and stellar mass. We then convert the measured under/overdensities
into a distribution, using ray-tracing through the
Millennium Simulation. We explore several limiting magnitudes and apertures,
and account for systematic and statistical uncertainties relevant to the
quality of the observational data, which we further test through simulations.
Our most robust estimate of has a median value
and a standard deviation of
. The measured corresponds to
uncertainty on the time delay distance, and hence the Hubble constant
inference from this system. The median value
is robust to (i.e. on ) regardless of the adopted
aperture radius, limiting magnitude and weighting scheme, as long as the latter
incorporates galaxy number counts, the projected distance to the main lens, and
a prior on the external shear obtained from mass modeling. The availability of
a well-constrained makes \hequad\ a valuable system for
measuring cosmological parameters using strong gravitational lens time delays.Comment: 24 pages, 17 figures, 6 tables. Submitted to MNRA
- …