26 research outputs found

    Stereoselective glycosylations using oxathiane spiroketal glycosyl donors

    Get PDF
    Novel oxathiane spiroketal donors have been synthesised and activated via an umpolung S-arylation strategy using 1,3,5-trimethoxybenzene and 1,3-dimethoxybenzene. The comparative reactivity of the resulting 2,4,6-trimethoxyphenyl (TMP)- and 2,4-dimethoxyphenyl (DMP)-oxathiane spiroketal sulfonium ions is discussed, and their α-stereoselectivity in glycosylation reactions is compared to the analogous TMP- and DMP-sulfonium ions derived from an oxathiane glycosyl donor bearing a methyl ketal group. The results show that the stereoselectivity of the oxathiane glycosyl donors is dependent on the structure of the ketal group and reactivity can be tuned by varying the substituent on the sulfonium ion

    A systematic review reveals conflicting evidence for the prevalence of antibodies against the sialic acid ‘xenoautoantigen’ Neu5Gc in humans and the need for a standardised approach to quantification

    Get PDF
    Copyright \ua9 2024 Hutton, Scott, Robson, Signoret and Fascione.Despite an array of hypothesised implications for health, disease, and therapeutic development, antibodies against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) remain a subject of much debate. This systematic review of 114 publications aimed to generate a comprehensive overview of published studies in this field, addressing both the reported prevalence of anti-Neu5Gc antibodies in the human population and whether experimental variation accounts for the conflicting reports about the extent of this response. Absolute titres of anti-Neu5Gc antibodies, the reported prevalence of these antibodies, and the individual variation observed within experiments were analysed and grouped according to biological context (‘inflammation’, ‘xenotransplantation’, ‘biotherapeutic use’, ‘cancer’, and ‘healthy populations’), detection method, target epitope selection, and choice of blocking agent. These analyses revealed that the experimental method had a notable impact on both the reported prevalence and absolute titres of anti-Neu5Gc antibodies in the general population, thereby limiting the ability to ascribe reported trends to genuine biological differences or the consequence of experimental design. Overall, this review highlights important knowledge gaps in the study of antibodies against this important xenoautoantigen and the need to establish a standardised method for their quantification if the extent of the importance of Neu5Gc in human health is to be fully understood

    Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation

    Get PDF
    The α-oxo aldehyde is a highly reactive aldehyde for which many protein bioconjugation strategies exist. Here, we explore the genetic incorporation of a threonine-lysine dipeptide into proteins, harbouring a “masked” α-oxo aldehyde that is rapidly unveiled in four minutes. The reactive aldehyde could undergo site-specific protein modification by SPANC ligation

    A Protein‐Based Pentavalent Inhibitor of the Cholera Toxin B‐Subunit

    Get PDF
    Protein toxins produced by bacteria are the cause of many life-threatening diarrheal diseases. Many of these toxins, including cholera toxin (CT), enter the cell by first binding to glycolipids in the cell membrane. Inhibiting these multivalent protein/carbohydrate interactions would prevent the toxin from entering cells and causing diarrhea. Here we demonstrate that the site-specific modification of a protein scaffold, which is perfectly matched in both size and valency to the target toxin, provides a convenient route to an effective multivalent inhibitor. The resulting pentavalent neoglycoprotein displays an inhibition potency (IC50) of 104 pM for the CT B-subunit (CTB), which is the most potent pentavalent inhibitor for this target reported thus far. Complexation of the inhibitor and CTB resulted in a protein heterodimer. This inhibition strategy can potentially be applied to many multivalent receptors and also opens up new possibilities for protein assembly strategies

    Strain‐Promoted Cycloadditions in Lipid Bilayers Triggered by Liposome Fusion

    Get PDF
    Due to the variety of roles served by the cell membrane, its composition and structure are complex, making it difficult to study. Bioorthogonal reactions, such as the strain promoted azide-alkyne cycloaddition (SPAAC), are powerful tools for exploring the function of biomolecules in their native environment but have been largely unexplored within the context of lipid bilayers. Here, we developed a new approach to study the SPAAC reaction in liposomal membranes using azide- and strained alkyne-functionalized Förster resonance energy transfer (FRET) dye pairs. This study represents the first characterization of the SPAAC reaction between diffusing molecules inside liposomal membranes. Potential applications of this work include in situ bioorthogonal labeling of membrane proteins, improved understanding of membrane dynamics and fluidity, and the generation of new probes for biosensing assays

    Selectivity and stability of N-terminal targeting protein modification chemistries

    Get PDF
    Protein N-termini provide uniquely reactive motifs for single site protein modification. Though a number of reactions have been developed to target this site, the selectivity, generality, and stability of the conjugates formed has not been studied. We have therefore undertaken a comprehensive comparative study of the most promising methods for N-terminal protein modification, and find that there is no ‘one size fits all’ approach, necessitating reagent screening for a particular protein or application. Moreover, we observed limited stability in all cases, leading to a need for continued innovation and development in the bioconjugation field

    Cell-specific bioorthogonal tagging of glycoproteins

    Get PDF
    Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function

    Correction: Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation

    Get PDF
    Correction for ‘Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation’ by Robin L. Brabham et al., Org. Biomol. Chem., 2020, 18, 4000–4003, DOI: 10.1039/D0OB00972E. The authors regret that the Acknowledgements section included below was accidentally omitted from the published article

    A natural carbohydrate substrate for Mycobacterium tuberculosis methionine sulfoxide reductase A

    No full text
    Enzymatic reduction of the methylsulfinylxylofuranosyl (MSX) groups in lipoarabinomannan provides proof of the absolute configuration of MSX and a possible biochemical mechanism for oxidative protection in Mycobacterium tuberculosis

    Stereoselective glycosylation using oxathiane glycosyl donors

    No full text
    A bicyclic glycosyl donor is activated as an arylsulfonium ion and used to synthesise alpha-glycosides with high stereoselectivity
    corecore