29 research outputs found

    Dissecting Nucleosome Free Regions by a Segmental Semi-Markov Model

    Get PDF
    BACKGROUND: Nucleosome free regions (NFRs) play important roles in diverse biological processes including gene regulation. A genome-wide quantitative portrait of each individual NFR, with their starting and ending positions, lengths, and degrees of nucleosome depletion is critical for revealing the heterogeneity of gene regulation and chromatin organization. By averaging nucleosome occupancy levels, previous studies have identified the presence of NFRs in the promoter regions across many genes. However, evaluation of the quantitative characteristics of individual NFRs requires an NFR calling method. METHODOLOGY: In this study, we propose a statistical method to identify the patterns of NFRs from a genome-wide measurement of nucleosome occupancy. This method is based on an appropriately designed segmental semi-Markov model, which can capture each NFR pattern and output its quantitative characterizations. Our results show that the majority of the NFRs are located in intergenic regions or promoters with a length of about 400-600bp and varying degrees of nucleosome depletion. Our quantitative NFR mapping allows for an investigation of the relative impacts of transcription machinery and DNA sequence in evicting histones from NFRs. We show that while both factors have significant overall effects, their specific contributions vary across different subtypes of NFRs. CONCLUSION: The emphasis of our approach on the variation rather than the consensus of nucleosome free regions sets the tone for enabling the exploration of many subtler dynamic aspects of chromatin biology

    Adjusting Phenotypes by Noise Control

    Get PDF
    Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks

    Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay

    No full text
    BACKGROUND: Leishmania donovani (LD) is a protozoan parasite transmitted to humans from sand flies, which causes Visceral Leishmaniasis (VL). Currently, the diagnosis is based on presence of the anti-LD antibodies and clinical symptoms. Molecular diagnosis would require real-time PCR, which is not easy to implement at field settings. In this study, we report on the development and testing of a recombinase polymerase amplification (RPA) assay for the detection of LD. METHODS: A genomic DNA sample was applied to determine the assay analytical sensitivity. The cross-reactivity of the assay was tested by DNA of Leishmania spp. and of pathogens considered for differential diagnosis. The clinical performance of the assay was evaluated on LD positive and negative samples. All results were compared with real-time PCR. To allow the use of the assay at field settings, a mobile suitcase laboratory (56 × 45.5 × 26.5 cm) was developed and operated at the local hospital in Mymensingh, Bangladesh. RESULTS: The LD RPA assay detected equivalent to one LD genomic DNA. The assay was performed at constant temperature (42 °C) in 15 min. The RPA assay also detected other Leishmania species (L. major, L. aethiopica and L. infantum), but did not identify nucleic acid of other pathogens. Forty-eight samples from VL, asymptomatic and post-kala-azar dermal leishmaniasis subjects were detected positive and 48 LD-negative samples were negative by both LD RPA and real-time PCR assays, which indicates 100 % agreement. The suitcase laboratory was successfully operated at the local hospital by using a solar-powered battery. DNA extraction was performed by a novel magnetic bead based method (SpeedXtract), in which a simple fast lysis protocol was applied. Moreover, All reagents were cold-chain independent. CONCLUSIONS: The mobile suitcase laboratory using RPA is ideal for rapid sensitive and specific detection of LD especially at low resource settings and could contribute to VL control and elimination programmes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1572-8) contains supplementary material, which is available to authorized users
    corecore