11 research outputs found

    Identification of genes required for the survival of B. fragilis using massive parallel sequencing of a saturated transposon mutant library

    Get PDF
    BACKGROUND: Bacteroides fragilis is a Gram-negative anaerobe that is normally a human gut commensal; it comprises a small percentage of the gut Bacteroides but is the most frequently isolated Bacteroides from human infections. Identification of the essential genes necessary for the survival of B. fragilis provides novel information which can be exploited for the treatment of bacterial infections. RESULTS: Massive parallel sequencing of saturated transposon mutant libraries (two mutant pools of approximately 50,000 mutants each) was used to determine the essential genes for the growth of B. fragilis 638R on nutrient rich medium. Among the 4326 protein coding genes, 550 genes (12.7%) were found to be essential for the survival of B. fragilis 638R. Of the 550 essential genes, only 367 genes were assigned to a Cluster of Orthologous Genes, and about 290 genes had Kyoto Encyclopedia of Genes and Genomes orthologous members. Interestingly, genes with hypothetical functions accounted for 41.3% of essential genes (227 genes), indicating that the functions of a significant percentage of the genes used by B. fragilis 638R are still unknown. Global transcriptome analysis using RNA-Seq indicated that most of the essential genes (92%) are, in fact, transcribed in B. fragilis 638R including most of those coding for hypothetical proteins. Three hundred fifty of the 550 essential genes of B. fragilis 638R are present in Database of Essential Genes. 10.02 and 31% of those are genes included as essential genes for nine species (including Gram-positive pathogenic bacteria). CONCLUSIONS: The essential gene data described in this investigation provides a valuable resource to study gene function and pathways involved in B. fragilis survival. Thorough examination of the B. fragilis-specific essential genes and genes that are shared between divergent organisms opens new research avenues that will lead to enhanced understanding of survival strategies used by bacteria in different microniches and under different stress situations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi: 10.1186/1471-2164-15-429) contains supplementary material, which is available to authorized users

    Interaction between the TolC and AcrA Proteins of a Multidrug Efflux System of Escherichia coli

    No full text
    This paper provides the biochemical evidence for physical interactions between the outer membrane component, TolC, and the membrane fusion protein component, AcrA, of the major antibiotic efflux pump of Escherichia coli. Cross-linking between TolC and AcrA was independent of the presence of any externally added substrate of the efflux pump or of the pump protein, AcrB. The biochemical demonstration of a TolC-AcrA interaction is consistent with genetic studies in which extragenic suppressors of a mutant TolC strain were found in the acrA gene

    Vestibules Are Part of the Substrate Path in the Multidrug Efflux Transporter AcrB of Escherichia coli ▿

    No full text
    The path of substrates in the multidrug efflux pump AcrB of Escherichia coli was examined by using labeling with a lipophilic substrate mimic, Bodipy FL maleimide. Four (out of eight) residues in the vestibule bound the dye, suggesting its role in substrate transport, whereas only one (out of nine) residue in the central cavity tested positive

    Antibiotic-Sensitive TolC Mutants and Their Suppressors

    No full text
    The TolC protein of Escherichia coli, through its interaction with AcrA and AcrB, is thought to form a continuous protein channel that expels inhibitors from the cell. Consequently, tolC null mutations display a hypersensitive phenotype. Here we report the isolation and characterization of tolC missense mutations that direct the synthesis of mutant TolC proteins partially disabled in their efflux role. All alterations, consisting of single amino acid substitutions, were localized within the periplasmic α-helical domain. In two mutants carrying an I106N or S350F substitution, the hypersensitivity phenotype may be in part due to aberrant TolC assembly. However, two other alterations, R367H and R390C, disrupted efflux function by affecting interactions among the helices surrounding TolC's periplasmic tunnel. Curiously, these two TolC mutants were sensitive to a large antibiotic, vancomycin, and exhibited a Dex(+) phenotype. These novel phenotypes of TolC(R367H) and TolC(R390C) were likely the result of a general influx of molecules through a constitutively open tunnel aperture, which normally widens only when TolC interacts with other proteins during substrate translocation. An intragenic suppressor alteration (T140A) was isolated from antibiotic-resistant revertants of the hypersensitive TolC(R367H) mutant. T140A also reversed, either fully (R390C) or partially (I106N and S350F), the hypersensitivity phenotype of other TolC mutants. Our data suggest that this global suppressor phenotype of T140A is the result of impeded antibiotic influx caused by tapering of the tunnel passage rather than by correcting individual mutational defects. Two extragenic suppressors of TolC(R367H), mapping in the regulatory region of acrAB, uncoupled the AcrR-mediated repression of the acrAB genes. The resulting overexpression of AcrAB reduced the hypersensitivity phenotype of all the TolC mutants. Similar results were obtained when the chromosomal acrR gene was deleted or the acrAB genes were expressed from a plasmid. Unlike the case for the intragenic suppressor T140A, the overexpression of AcrAB diminished hypersensitivity towards only erythromycin and novobiocin, which are substrates of the TolC-AcrAB efflux pump, but not towards vancomycin, which is not a substrate of this pump. This showed that the two types of suppressors produced their effects by fundamentally different means, as the intragenic suppressor decreased the general influx while extragenic suppressors increased the efflux of TolC-AcrAB pump-specific antibiotics

    A Portable Wearable Tele-ECG Monitoring System

    No full text
    This paper introduces a wearable Tele-ECG and heart rate (HR) monitoring system which has a novel architecture including a stretchable singlet redesigned with textile electrodes (TEs), textile threads, snap fasteners, Velcro, sponges, and an ECG circuit. In addition, a Bluetooth low energy (BLE), a smartphone, a server, and a web page have been added to the system for remote monitoring. The TE can be attached to and removed from the singlet by a Velcro, which allows the user to dry-clean the TE easily for long-term use. A new holter-based ECG system has been designed to evaluate the TE-based ECG system and the average correlation between the recorded ECG signals is obtained as 99.23%. A filtered digital signal, with a high signal-to-noise ratio of 45.62 dB, is transmitted to the smartphone via BLE. The ECG signal is plotted, the HR is calculated with 1.83% mean absolute percentage error, and displayed. The data are sent to the server, allowing the patient's physician to analyze the signals in real time through the web page or the smartphone. If HR reaches beyond the normal range or user presses the “HELP” button on the smartphone screen, the physician is informed automatically by an short message service (SMS) with a location pin on the map. The battery lasts approximately 14 days and when it needs replacement, the system automatically alerts the users by an SMS and a flashing LED. This fast and uninterrupted telemonitoring system has the potential to improve the patient's life quality by providing a psychological reassuranc

    Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis

    No full text
    BACKGROUND: Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear. METHODS: A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole. RESULTS: Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo. CONCLUSIONS: Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis
    corecore