8 research outputs found

    Prevalence and detection of cytomegalovirus by polymerase chain reaction (PCR) and simple ELISA in pregnant women

    Get PDF
    A total of 327 women were screened, amongst them, 7 (2.14%) were cytomegalovirus (CMV) DNA positive by polymerase chain reaction (PCR). Antibodies against toxoplasma were also detected in 106 (32.41%) women, while 54 (16.51%) were anti CMV positive. Eleven (3.36%) and thirteen (3.97%) women were anti HSV and anti Rubella virus positive, respectively. High prevalence was recorded in age group 21 to 30 years which was 2.53% (4/158), followed by the age group <20 years which was 2.27% (1/44), then in age group 31 to 40 years, 2.25% (2/89) CMV DNA were detected by PCR and 0% was recorded in age group of above 40 years. The overall prevalence of human cytomegalovirus (HCMV) infection in 16 to 45 year-old was 2.14% by PCR and the number of abortion noted was 0 to 5 times. Active infection of HCMV was observed in women with number of abortion. Force of infection was significantly higher among age group 21 to 30 and 31 to 40 years. PCR was a more sensitive, reliable and accurate method for the detection of HCMV infection in pregnant women during this study.Key words: Cytomegalovirus, PCR, human cytomegalovirus (HCMV) and ELIS

    Genomic Features and Molecular Function of a Novel Stress-Tolerant Bacillus halotolerans Strain Isolated from an Extreme Environment

    Get PDF
    Simple Summary: The Qinghai–Tibet Plateau is known as the “third pole of the world”. Due to the extreme geographical location, Qinghai–Tibet Plateau has unique ecosystems characterized by oxygen deficiency, low temperature, high salinity and alkalinity. We carried out the current study to explore the excellent extremophilic Bacillus strains via potential stress resistance as well as biocontrol properties in the Qinghai–Tibet Plateau. We found a Bacillus halotolerans strain with a promising ability to withstand harsh environments and which also exhibits an optimistic biocontrol activity against plant pathogens. We revealed the whole genome sequencing and its taxonomic position and elucidated its molecular functions that were responsible for enhancing stress tolerance as well as suppressing plant pathogens at the genetic level. Lastly, we identified this strain harbored the specific genes associated with stresses resistance, biocontrol function, and can be used as a biological agent in the agriculture field.Due to its topographical position and climatic conditions, the Qinghai–Tibet Plateau possesses abundant microorganism resources. The extremophilic strain KKD1 isolated from Hoh Xil possesses strong stress tolerance, enabling it to propagate under high salinity (13%) and alkalinity (pH 10.0) conditions. In addition, KKD1 exhibits promising biocontrol activity against plant pathogens. To further explore these traits at the genomic level, we performed whole-genome sequencing and analysis. The taxonomic identification according to the average nucleotide identity based on BLAST revealed that KKD1 belongs to Bacillus halotolerans. Genetic screening of KKD1 revealed that its stress resistance mechanism depends on osmotic equilibrium, membrane transportation, and the regulation of ion balance under salt and alkaline stress. The expression of genes involved in these pathways was analyzed using real-time quantitative PCR. The presence of different gene clusters encoding antimicrobial secondary metabolites indicated the various pathways by which KKD1 suppresses phytopathogenic growth. Moreover, the lipopeptides surfactin and fengycin were identified as being significant antifungal components of KKD1. Through comparative genomics analysis, we noticed that KKD1 harbored specific genes involved in stress resistance and biocontrol, thus providing a new perspective on the genomic features of the extremophilic Bacillus species.Peer Reviewe

    Antagonistic Potential of Novel Endophytic Bacillus Strains and Mediation of Plant Defense against Verticillium Wilt in Upland Cotton

    No full text
    Verticillium wilt caused by Verticillium dahliae is a threatening disease of cotton, causing economic loss worldwide. In this study, nine endophytic Bacillus strains isolated from cotton roots exhibited inhibitory activity against V. dahliae strain VD-080 in a dual culture assay. B. altitudinis HNH7 and B. velezensis HNH9 were chosen for further experiments based on their high antagonistic activity. The secondary metabolites of HNH7 and HNH9 also inhibited the growth of VD-080. Genetic marker-assisted detection revealed the presence of bacillibactin, surfactin, bacillomycin and fengycin encoding genes in the genome of HNH7 and HNH9 and their corresponding gene products were validated through LC-MS. Scanning electron microscopy revealed mycelial disintegration, curling and shrinkage of VD-080 hyphae after treatment with methanolic extracts of the isolated endophytes. Furthermore, a significant reduction in verticillium wilt severity was noticed in cotton plants treated with HNH7 and HNH9 as compared to control treatments. Moreover, the expression of defense-linked genes, viz., MPK3, GST, SOD, PAL, PPO and HMGR, was considerably higher in plants treated with endophytic Bacillus strains and inoculated with VD-080 as compared to control

    The Type III Accessory Protein HrpE of Xanthomonas oryzae pv. oryzae Surpasses the Secretion Role, and Enhances Plant Resistance and Photosynthesis

    No full text
    Many species of plant-pathogenic gram-negative bacteria deploy the type III (T3) secretion system to secrete virulence components, which are mostly characteristic of protein effectors targeting the cytosol of the plant cell following secretion. Xanthomonas oryzae pv. oryzae (Xoo), a rice pathogen causing bacterial blight disease, uses the T3 accessory protein HrpE to assemble the pilus pathway, which in turn secretes transcription activator-like (TAL) effectors. The hrpE gene can execute extensive physiological and pathological functions beyond effector secretion. As evidenced in this study, when the hrpE gene was deleted from the Xoo genome, the bacteria incur seriouimpairments in multiplication, motility, and virulence. The virulence nullification is attributed to reduced secretion and translocation of PthXo1, which is a TAL effector that determines the bacterial virulence in the susceptible rice varieties. When the HrpE protein produced by prokaryotic expression is applied to plants, the recombinant protein is highly effective at inducing the defense response. Moreover, leaf photosynthesis efficiency is enhanced in HrpE-treated plants. These results provide experimental avenues to modulate the plant defense and growth tradeoff by manipulating a bacterial T3 accessory protein

    Fengycin Produced by <i>Bacillus amyloliquefaciens</i> FZB42 Inhibits <i>Fusarium graminearum</i> Growth and Mycotoxins Biosynthesis

    No full text
    Fusarium graminearum is a notorious pathogen that causes Fusarium head blight (FHB) in cereal crops. It produces secondary metabolites, such as deoxynivalenol, diminishing grain quality and leading to lesser crop yield. Many strategies have been developed to combat this pathogenic fungus; however, considering the lack of resistant cultivars and likelihood of environmental hazards upon using chemical pesticides, efforts have shifted toward the biocontrol of plant diseases, which is a sustainable and eco-friendly approach. Fengycin, derived from Bacillus amyloliquefaciens FZB42, was purified from the crude extract by HPLC and further analyzed by MALDI-TOF-MS. Its application resulted in structural deformations in fungal hyphae, as observed via scanning electron microscopy. In planta experiment revealed the ability of fengycin to suppress F. graminearum growth and highlighted its capacity to combat disease incidence. Fengycin significantly suppressed F. graminearum, and also reduced the deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and zearalenone (ZEN) production in infected grains. To conclude, we report that fengycin produced by B. amyloliquefaciens FZB42 has potential as a biocontrol agent against F. graminearum and can also inhibit the mycotoxins produced by this fungus
    corecore