8 research outputs found

    Exploiting the Metabolism of the Gut Microbiome as a Vehicle for Targeted Drug Delivery to the Colon

    Get PDF
    The prevalence of colon-associated diseases has increased significantly over the past several decades, as evidenced by accumulated literature on conditions such as Crohn’s disease, irritable bowel syndrome, colorectal cancer, and ulcerative colitis. Developing therapeutics for these diseases is challenging due to physiological barriers of the colon, systemic side effects, and the intestinal environment. Therefore, in a search for novel methods to overcome some of these problems, researchers discovered that microbial metabolism by gut microbiotia offers a potential method for targeted drug delivery This overview highlights several drug delivery systems used to modulate the microbiota and improve colon-targeted drug delivery. This technology will be important in developing a new generation of therapies which harness the metabolism of the human gut microflora

    Therapeutic Potential of Cannabinoids on Tumor Microenvironment: A Molecular Switch in Neoplasia Transformation

    Get PDF
    The efficacy of chemotherapy depends on the tumor microenvironment. This microenvironment consists of a complex cellular network that can exert both stimulatory and inhibitory effects on tumor genesis. Given the increasing interest in the effectiveness of cannabis, cannabinoids have gained much attention as a potential chemotherapy drug. Cannabinoids are a group of marker compounds found in L., more commonly known as marijuana, a psychoactive drug used since ancient times for pain management. Although the anticancer potential of , has been recognized previously, increased attention was generated after discovering the endocannabinoid system and the successful production of cannabinoid receptors. In vitro and in vivo studies on various tumor models have shown therapeutic efficiency by modifying the tumor microenvironment. However, despite extensive attention regarding potential therapeutic implications of cannabinoids, considerable clinical and preclinical analysis is needed to adequately define the physiological, pharmacological, and medicinal aspects of this range of compounds in various disorders covered in this review. This review summarizes the key literature surrounding the role of cannabinoids in the tumor microenvironment and their future promise in cancer treatment

    Fourth-generation glucose sensors composed of coppernanostructures for diabetes management: A critical review

    Get PDF
    More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and cost-effectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past ten years (2010 – present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS

    Dietary Crocin is Protective in Pancreatic Cancer while Reducing Radiation-Induced Hepatic Oxidative Damage

    Get PDF
    Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer

    Increased markers of oxidative stress in autistic children of the Sultanate of Oman

    No full text
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder of early childhood, and an enumeration about its etiology and consequences is still limited. Oxidative stress-induced mechanisms are believed to be the major cause for ASD. In this study 19 autistic and 19 age-matched normal Omani children were recruited to analyze their degree of redox status and a prewritten consent was obtained. Blood was withdrawn from subjects in heparin-coated tube, and plasma was separated. Plasma oxidative stress indicators such as nitric oxide (NO), malondialdehyde (MDA), protein carbonyl, and lactate to pyruvate ratio were quantified using commercially available kits. A significant elevation was observed in the levels of NO, MDA, protein carbonyl, and lactate to pyruvate ratio in the plasma of Omani autistic children as compared to their age-matched controls. These oxidative stress markers are strongly associated with major cellular injury and manifest severe mitochondrial dysfunction in autistic pathology. Our results also suggest that oxidative stress might be involved in the pathogenesis of ASD, and these parameters could be considered as diagnostic markers to ensure the prevalence of ASD in Omani children. However, the oxidative stress-induced molecular mechanisms in ASD should be studied in detail.3 page(s

    Therapeutic Potential of Cannabinoids on Tumor Microenvironment: A Molecular Switch in Neoplasia Transformation

    No full text
    The efficacy of chemotherapy depends on the tumor microenvironment. This microenvironment consists of a complex cellular network that can exert both stimulatory and inhibitory effects on tumor genesis. Given the increasing interest in the effectiveness of cannabis, cannabinoids have gained much attention as a potential chemotherapy drug. Cannabinoids are a group of marker compounds found in Cannabis sativa L., more commonly known as marijuana, a psychoactive drug used since ancient times for pain management. Although the anticancer potential of C. sativa, has been recognized previously, increased attention was generated after discovering the endocannabinoid system and the successful production of cannabinoid receptors. In vitro and in vivo studies on various tumor models have shown therapeutic efficiency by modifying the tumor microenvironment. However, despite extensive attention regarding potential therapeutic implications of cannabinoids, considerable clinical and preclinical analysis is needed to adequately define the physiological, pharmacological, and medicinal aspects of this range of compounds in various disorders covered in this review. This review summarizes the key literature surrounding the role of cannabinoids in the tumor microenvironment and their future promise in cancer treatment
    corecore