50 research outputs found

    Atypical microbial infections of digestive tract may contribute to diarrhea in mucopolysaccharidosis patients: a MPS I case study

    Get PDF
    BACKGROUND: Mucopolysaccharidoses are heritable, metabolic diseases caused by deficiency in an activity of one of specific lysosomal enzymes involved in degradation of mucoplysaccharides (glycosaminoglycans). Among many medical problems of patients with mucopolysaccharidoses, there are frequent episodes of diarrhea of unknown etiology. CASE PRESENTATION: A girl, diagnosed enzymatically for mucopolysaccharidosis type I (deficiency of α-L-iduronidase) at the age of 3 years and 9 months, was investigated until the age of 5 years and 4 months. Frequent loose stools and episodes of diarrhea, often accompanied by vomiting, were encountered. Detailed microbiological analyses were performed and atypical microbial infections (most often enetropathogenic Escherichia coli, but also other species, like Pseudomonas aeruginosa or Staphylococcus aureus, as well as adenoviruses) of the digestive tract were found in most severe diarrhea episodes. Often, isolations of pathogenic bacterial strains from stools of the investigated patient suffering from diarrhea were not obvious during the first screening, and only detailed microbiological studies, including re-isolation of colonies, gave the results of isolation of particular pathogenic strains (especially in the case of enetropathogenic E. coli). CONCLUSION: We conclude that atypical microbial infections of digestive tract may contribute significantly to diarrhea in mucopolysaccaridosis patients. Since isolated strains were not typical and their isolation was often possible only after detailed investigation (not during a standard screening), such atypical microbial infections of digestive tract of mucopolysaccharidosis patients could be usually overlooked to date. Importantly, these atypical infections could be effectively treated with antimicrobial agents

    Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset bacterial sepsis is a feared complication of the newborn. A large proportion of infants admitted to the Neonatal Intensive Care Unit (NICU) for suspected sepsis receive treatment with potent systemic antibiotics while a diagnostic workup is in progress. The gold standard for detecting bacterial sepsis is blood culture. However, as pathogens in blood cultures are only detected in approximately 25% of patients, the sensitivity of blood culture is suspected to be low. Therefore, the diagnosis of sepsis is often based on the development of clinical signs, in combination with laboratory tests such as a rise in C – reactive protein (CRP). Molecular assays for the detection of bacterial DNA in the blood represent possible new diagnostic tools for early identification of a bacterial cause.</p> <p>Methods</p> <p>A broad range 16S rDNA polymerase chain reaction (PCR) without preincubation was compared to conventional diagnostic work up for clinical sepsis, including BACTEC blood culture, for early determination of bacterial sepsis in the newborn. In addition, the relationship between known risk factors, clinical signs, and laboratory parameters considered in clinical sepsis in the newborn were explored.</p> <p>Results</p> <p>Forty-eight infants with suspected sepsis were included in this study. Thirty-one patients were diagnosed with sepsis, only 6 of these had a positive blood culture. 16S rDNA PCR analysis of blinded blood samples from the 48 infants revealed 10 samples positive for the presence of bacterial DNA. PCR failed to be positive in 2 samples from blood culture positive infants, and was positive in 1 sample where a diagnosis of a non-septic condition was established. Compared to blood culture the diagnosis of bacterial proven sepsis by PCR revealed a 66.7% sensitivity, 87.5% specificity, 95.4% positive and 75% negative predictive value. PCR combined with blood culture revealed bacteria in 35.1% of the patients diagnosed with sepsis. Irritability and feeding difficulties were the clinical signs most often observed in sepsis. CRP increased in the presence of bacterial infection.</p> <p>Conclusion</p> <p>There is a need for PCR as a method to quickly point out the infants with sepsis. However, uncertainty about a bacterial cause of sepsis was not reduced by the PCR result, reflecting that methodological improvements are required in order for DNA detection to replace or supplement traditional blood culture in diagnosis of bacterial sepsis.</p

    The Immune Cell Composition in Barrett's Metaplastic Tissue Resembles That in Normal Duodenal Tissue

    Get PDF
    BACKGROUND AND OBJECTIVE: Barrett's esophagus (BE) is characterized by the transition of squamous epithelium into columnar epithelium with intestinal metaplasia. The increased number and types of immune cells in BE have been indicated to be due to a Th2-type inflammatory process. We tested the alternative hypothesis that the abundance of T-cells in BE is caused by a homing mechanism that is found in the duodenum. PATIENTS AND METHODS: Biopsies from BE and duodenal tissue from 30 BE patients and duodenal tissue from 18 controls were characterized by immmunohistochemistry for the presence of T-cells and eosinophils(eos). Ex vivo expanded T-cells were further phenotyped by multicolor analysis using flowcytometry. RESULTS: The high percentage of CD4(+)-T cells (69±3% (mean±SEM/n = 17, by flowcytometry)), measured by flowcytometry and immunohistochemistry, and the presence of non-activated eosinophils found in BE by immunohistochemical staining, were not different from that found in duodenal tissue. Expanded lymphocytes from these tissues had a similar phenotype, characterized by a comparable but low percentage of αE(CD103) positive CD4(+)cells (44±5% in BE, 43±4% in duodenum of BE and 34±7% in duodenum of controls) and a similar percentage of granzyme-B(+)CD8(+) cells(44±5% in BE, 33±6% in duodenum of BE and 36±7% in duodenum of controls). In addition, a similar percentage of α4β7(+) T-lymphocytes (63±5% in BE, 58±5% in duodenum of BE and 62±8% in duodenum of controls) was found. Finally, mRNA expression of the ligand for α4β7, MAdCAM-1, was also similar in BE and duodenal tissue. No evidence for a Th2-response was found as almost no IL-4(+)-T-cells were seen. CONCLUSION: The immune cell composition (lymphocytes and eosinophils) and expression of intestinal adhesion molecule MAdCAM-1 is similar in BE and duodenum. This supports the hypothesis that homing of lymphocytes to BE tissue is mainly caused by intestinal homing signals rather than to an active inflammatory response

    Characterization of M cell formation and associated mononuclear cells during indomethacin-induced intestinal inflammation

    No full text
    M cells represent an important gateway for the intestinal immune system by delivering luminal antigens through the follicle-associated epithelium to the underlying immune cells. The goal of this study was to characterize this route of antigen uptake during intestinal inflammation by characterizing M cell formation and M cell-associated lymphocytes after indomethacin challenge in rats. We demonstrated increased M cell formation as early as 12 h after a single injection of indomethacin. The elevated M cell counts were determined until day 3 and returned to basal levels after 7 days. Electron microscopic studies revealed an expansion of mononuclear cells inside the M cell pocket that were characterized predominantly as B cells, T cell receptor (TCR)αβ- and CD4-positve T cells, whereas other markers such as CD11b, CD8 and CD25 remained unchanged. In situ hybridization studies showed increased expression of interleukin (IL)-4 by lymphocytes during intestinal inflammation in the Peyer's patch follicle. These studies illuminate the relevance of M cells during intestinal inflammation and suggest that M cells derive from epithelial cells in a certain microenvironment
    corecore