3 research outputs found

    Learning of Closed-Loop Motion Control

    Get PDF
    Learning motion control as a unified process of designing the reference trajectory and the controller is one of the most challenging problems in robotics. The complexity of the problem prevents most of the existing optimization algorithms from giving satisfactory results. While model-based algorithms like iterative linear-quadratic-Gaussian (iLQG) can be used to design a suitable controller for the motion control, their performance is strongly limited by the model accuracy. An inaccurate model may lead to degraded performance of the controller on the physical system. Although using machine learning approaches to learn the motion control on real systems have been proven to be effective, their performance depends on good initialization. To address these issues, this paper introduces a two-step algorithm which combines the proven performance of a model-based controller with a model-free method for compensating for model inaccuracy. The first step optimizes the problem using iLQG. Then, in the second step this controller is used to initialize the policy for our PI2^2-01 reinforcement learning algorithm. This algorithm is a derivation of the PI2^2 algorithm enabling more stable and faster convergence. The performance of this method is demonstrated both in simulation and experimental results

    Whole-Body MPC and Dynamic Occlusion Avoidance: A Maximum Likelihood Visibility Approach

    No full text
    This paper introduces a novel approach for whole-body motion planning and dynamic occlusion avoidance. The proposed approach reformulates the visibility constraint as a likelihood maximization of visibility probability. In this formulation, we augment the primary cost function of a whole-body model predictive control scheme through a relaxed log barrier function yielding a relaxed log-likelihood maximization formulation of visibility probability. The visibility probability is computed through a probabilistic shadow field that quantifies point light source occlusions. We provide the necessary algorithms to obtain such a field for both 2D and 3D cases. We demonstrate 2D implementations of this field in simulation and 3D implementations through real-time hardware experiments. We show that due to the linear complexity of our shadow field algorithm to the map size, we can achieve high update rates, which facilitates onboard execution on mobile platforms with limited computational power. Lastly, we evaluate the performance of the proposed MPC reformulation in simulation for a quadrupedal mobile manipulator
    corecore